

EUI report May 16 - Sep 16 = STP 203 - 222

D. Berghmans for the EUI consortium

SWT 2022 Sept 16 Belfast

Contact: david.Berghmans@sidc.be (PI)

Highlights May 16 - Sept 16 = STP 203 - 222

Current Instrument Status	Instrument is nominal. Software update June 9 SOB blockage end of July, reboot on Aug 2 HRILYA degradation under study
Observations executed	FSI synoptics + shallow exposures for flares, Monthly LED campaigns, June 12 star campaign
Data download	SSMM packet store still contains (~ 5.8 GiB), >July 22
Latest Data release	EUI Data Release 5 was issued 2022-04-25, will be appended EUI data Release 6 targeted end 2022.
Science results	published papers: 21 (+6) papers
Upcoming instrument activity	RSWs, Oct 8- Nov 7

SSMM EUI Packet store

Latest data on the ground (besides LL): July 23

NSM00869 PS12 Accumul Data (Hourly median)

Flares

Suggestions for future perihelia

In coordination with ground based observatories, take high-resolution, high cadence observations of

- flares
- (quiescent or not) prominences

Eruptions

HRILYA degradation analysis

Udo Schuehle (MPS)

HRILYA resolution during perihelion

- During perihelion the HRILYA channel saw a strong degradation of resolution.
- in April a new study was designed for 12 June when the S/C has returned further away from the Sun. These data have been received in August.
- the data show a recovery of the resolution with distance from the Sun.

First image on 12 June after the perihelion

Last image of April 5

Half hour after door opening

Possible solutions

- We believe the degradation is caused by a thermal lensing effect of the Entrance Filter.
- The effect may have two causes:
 - a radial gradient of the temperature of the filter due to good conductance of the filter mount to the Hot Element, which is as cold as -10 °C, causing a refractive index gradient.
 - a stress-induced refractive index change due to the tight mounting of the filter being at such a low temperature, while the CTE of the retainer is twice as high as the filter (MgF2).

NIUD1023 EUI Lya entrance door r temperature (Hourly median)

