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Building blocks and radiative outputs
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Analysis so far made

Filter/line ratio temperature and density

— To find a temperature gradient along a loop

— Meaningless to multi-thread loop modelers?
Differential emission measure

— To compare the modeling results with observations
Small amplitude intensity fluctuation

— To find a signature of impulsive nanoflare-scale energy deposition
at the coronal height

High-speed upflow from spectroscopy
— Response of coronal plasmas after heating occurs

Detection of a type of waves by intensity and Doppler
variations at multiple points

— Estimating the wave energy flux in the corona
Anisotropy of nonthermal broadening in coronal emission line
— as tool to see the unresolved/fast wave signature



Doppler measurements of Flow speed
before EIS “

Measurements during the total Eclipse and
with ground- based coronagraphs

OSO & Skylab
— Low spectral resolution for scanning instruments
— Low spatial resolution to see loop structures for high A/AX instruments
=>» Average Doppler speed in quiet-Sun TR and corona
SERTS sounding rocket flight
— Sensitivity of early flights was not enough to scan the field during a few
min flight.
SOHO
— CDS: not easy to detect |v|<10 km/s due to broad instrumental width
=>» But, it measured spatially resolved chromospheric evaporation.

— SUMER: has potential to investigate AR loops with enough A/AA, but AR
not frequently observed to avoid detector degradation by strong EUV

=>» Doppler map of QS & CH in a good spatial sampling was obtained.




Doppler Motion in AR Corona

e 10 km/s upflows in the active region corona have been
reported in a SUMER observation (Teriaca et al. 1999).

e 5-20 km/s projected upflow speed has been reported
in @ TRACE imaging observation

(Winebarger et al. 2001).
* High-precision 2D Doppler measurements

over AR in the corona with EIS are new.
Ac%ive Regilon NOA!} 7946 .

SiIv + orv +

red

SUMER Slit pos.
on EIT image

Doppler Shift km s™

!

blue

1

o
—
o
]

4.0

g T(K) : : ON 5
Teriaca et al. (1999) et Winebarger et al. (2001)



EIS

* Design philosophy(1993; 20 years ago!):
— To investigate TR & coronal dynamics by Doppler and line width
measurement (but, A/AA ~ 4000)
— High sensitivity for short integration time
— Simultaneous observations of a wide temperature range

* Approach for heating of coronal loops

— High-resolution radiance map of a wide temperature range
* N, measurement along coronal loops
* T, measurement along coronal loops

— Doppler & line broadening
* Detection of waves in coronal loops
* Flow along coronal loops
* Detection of reconnection related flows
* Turbulence



Instrument size
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Basic Observables

Information from a single emission line
* Line intensity
* Line shift by Doppler motion
Doppler velocity = (OA/A) c
* Line width: temperature, non-thermal motion

thermal Doppler velocity
Ins:crumental width / nonthermal velocity
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In velocity unit
Vi nearly isotropic.
QS: Chae et al. 1998 from SUMER
AR: Hara & Ichimoto 1999, above the limb by a coronagraph
Information from selected two line ratio
* Temperature in a narrow range
* Density




Line center drift
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Equatorial fast QS scan

Fe Il 195 Radiance( QS average) Fe Il 195 line center
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Personal expectation
before starting EIS observations

Upflow along coronal loops to fill magnetic loop structures

High-speed flows as reconnection outflow from nanoflare
magnetic structures

Faint hot flows at the beginning of energy release
Emerging loop structures in Doppler map

Weak anisotropy of Vr component ( A V< Skm/s in
Var~30 km/s) in AR loops for a signature of Alfven wave
— Hara & Ichimoto 1999, ApJ, 513, 969



Active Region (AR) flow map

Doppler map of AR ~1km/s precision
Doschek et al. (2007), Del Zanna (2008)

Hara et al. (2008) etc.

Pixels

Doschek et a. (2007)
— Enhanced line width at the edge of AR.

— Line centroid correlate well with the width.
— Other interesting features reported
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— T, dependence of line shift
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] Maps from a Gaussian Fitting

S|

Fe XV 284 (logT=6.3) Scanning direction (= time )
Fe XV 284 /Intensity Fe XV 28 Fe XV 284 /FWHM

2.0 2.5 30 35 4.0 4.5 —40 =20 0 20 40 g¢ g0 100 110 120

log I (photons) V, (km/s) W ops (km/s)

Containing line broadening
- Selection of AR:  almost no microflares in GOES X-rays (~A-class) of instrumental origin

- Selection of lines: similar structure to soft X-ray image containing hot loops
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Containing line broadening
- Selection of AR:  almost no microflares in GOES X-rays (~A-class) of instrumental origin

- Selection of lines: similar structure to soft X-ray image containing hot loops




Height of FWHM enhancement
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A filter to find
coronal loops is
applied.

Apparently FWHM
decreases from the
bottom to top in
coronal loops.

The scale length in
the FWHM change

~10-20 Mm ?
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Upflow Doppler velocity and nonthermal
velocity near footpoint regions in the
disk-center observation decrease in the
limb observation.
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Property of Flows

Fe XIV 274 V; map
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Unresolved Flows
hidden in line width
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There is correlation between V and Vv,.

—> Superposition of line-of-sight plasma motions along magnetic field lines
Unresolved Doppler components are hidden ! Hara et al. 2008, ApJ, 678, L67



Multiple emission-line components

V7 = 15.4 km/s

V, = 10.5 km/s observed
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Residual

Normalized Counts

Line profiles at loop footpoints

Blue-side Enhanced Line Profile

This type of profile is found ubiquitously over the plage region.
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Clearly showing the presence of unresolved high-velocity
upflow components that have weaker emission than primary

component.
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Blue-side Enhanced Line Profile

Line profile Line profile
before observations by EIS observations
(solar origin) ( instrumentally broadened )
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Thermal energy
of high-velocity component
within EIS sampling (1 arcsec) unit

Emission measure  n?l =2.6x10%°cm™
Volume V =(725%x10°cm )3

— Width w =725 x10° cm
— Line of sight length / = 725 x10°> cm

n=19x%x10°cm?3

T~ 1.8 x10°K forFeXIV 274 observation

3nkTV = 5.4 x10%3 erg ~ nanoflare energy



Comparison with a 1D model



Suggestion from numerical simulations

* Antolin et al. (2008) Frequency
Heatine b q , . distribution on
eating by nanoflare energy inpu Doppler vel.
1D simulation, L=100 Mm,nanoflare: [=1000 km 3t disk center

e Uniform heating along a loop _ 12
2 10}
— V.., <40 km/s. no fast flows £ os}
— Vinean ~5 km/s EIS observations prefer S gj
* Footpoint concentrated heating E ook
— V... >200 km/s fast flows at footpoints v
40 -20 0 20 40
— Vo ean ~15 km/s Hara (2009) V (km/s)

— Heating by torsional Alfven wave through mode conversion
* Nearly uniform heating over a loop

— V. ..> 200 km/s fast flows over a loop
—V__ ~50km/s

mean



Line profile from a simulation result

Nanoflare simulation (footpoint heating)
[ nanoflare input at 2 -12 Mm height

Antolin et al. (2008)
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high-speed component
- understanding in 2008 -

High velocity in the corona:

— impulsive energy deposition

Location of high speed component: [ near footpoints |

— Energy deposition is at low coronal height.
= understood so from comparison with simple model calculations
**Hara+’s idea was misunderstood by referring a blue-wing enhancement

expected from a nanoflare model (Patsourakos & Kimchuk 2006), which
predicts a high-speed component over the loop.

Low emission:
— Scale of energy deposition may be smaller than the EIS spatial resolution.
Intermittency:

— <25 min only confirmed from slow EIS raster data covering AR plage.
— Frequent occurrence was found later by sit-and stare observations.



Blue-Red asymmetry
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Relation to chromospheric activity

Chromospheric

Fe XIV activity Fe XIV 264
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De Pontieu et al. (2009)

‘A significant part of the heating and energizing of the corona
occurs at chromospheric heights, in association with
chromospheric jets.’
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Multiple Doppler components

Double Gaussian fitting by Bryan et al. (2010), Peter (2010),
Tian et al. (2011) basically confirms the presence of high-
speed component at the blue wing.

* The nature of the high-speed component is shown below:
both double Gaussian and RB-asymmetry analysis are shown from Tian+2011.

1: core component, 2: wing component
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Position of secondary component
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What magnetic structures associated
with the high speed flow?



Interpretation by magnetic reconnection
for unresolved fast flows

/r”pﬂ‘”f YA

* Local Alfven speed in the reconnection region will be
much smaller than so-called coronal Alfven speed.

 Dominant flow direction will be along the guide field.



What magnetic structures are
associated with the high-speed flows
in AR?



Outflow from Edge of Active Region

* Apparent fast outflow structure
has been found at the edge of
active region from Hinode X-
ray observations in the corona.

* Hinode spectroscopic coronal
observations support the fast
flow as real outflow.
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Outflow from Edge of Active Region

* Magnetic field in the source
region of the outflow is
connected to be interplanetary
space.

e [t is considered to be the
source of slow solar wind.

Sakao et al. 2007, Science, 318, 1585



Quasi-separatrix layers (QSLs)

Fe Xl line intensity .Fe Xl Doppler velocity . \
with MDI B contours (50G) /\
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‘The outflows originate from specific locations of Dominant QSL

the magnetic topology where field lines display i

strong gradients of magnetic connectivity, a @ﬁ .

namely quasi-separatrix layers (QSLs), b S

or in the limit of infinitely thin QSLs, separatrices.’

=» Magnetic reconnection at QSL is the driver Baker et al. 2009, ApJ, 705, 926
of outflows

Related work: van Driel-Gesztelyi et al. 2012, Solar Phys., 281, 237
Demouline et al. 2013, Solar Phys., 283, 341



Temporal scale of high-speed component



Hinode/EIS Fe XIIl 202.04A

Quasi-periodic upflow™
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Quasi-periodic upflow
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Quasi-periodic upflow
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Doppler(/p) Line broadenmnenn).
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* Short duration (~1 min) V\; events frequently occur at the
base of the corona.

 The upflows and upward propagating disturbance appear to
start there.

* The line profile that is in the high corona is very symmetric.
No fast V, component is identified in the high corona.

Nishizuka & Hara 2011, ApJ, 737, L43
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* The asymmetries are dependent on temperature, and are
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A faint enhancement In the blue wing appear for T, > 0.6 MK.

FIP bias of the faint fast component: 3-5
— The high-speed component may contribute to the slow-speed wind.
(see Brooks & Warren 2011, ApJ, 727, L13 for the primary component.)

The high-speed plasma producing the blue asymmetryisin a
coronal origin in the outflow region.

How about at the loop footpoint?



R-B asymmetry in 3D modeling

Martinez-Sykora et al. 2011, ApJ, 732, 84

R-B asymmetry is found at the footpoint of coronal loops in the
Oslo 3D MHD simulation.

But it is an order of magnitude smaller than what we observe
with EIS. =»Difficult to detect that level from EIS observations.

R-B asymmetry in the model is more prominent in TR that in
the corona.

EIS observations in the outflow region show that the
asymmetry is stronger in the corona (Brooks & Warren 2012).

Viggo may explain this issue in his presentation later.



Summary

Hinode EIS has revealed flow structures in active regions.

Upflow structures along coronal loops, as response of
coronal heating, have been found.

High-speed upflows (V;~50-100 km/s) are concentrated
near the footpoints of coronal loops, which is evidence for
a direct signature of footpoint heating.

High-speed upflows appear in unipolar plage regions and
are located at QSL where component reconnection may
occur. Relation between local magnetic structures and
coronal event is not well known.

PD appears to be associated with the events at the loop
footpoint.



