On-ground calibrations of ASPIICS: results and discussion

Sergei Shestov

using measurements and analysis of CSL & INAF & ROB & MPS teams

ASPIICS onboard Proba3

Proba3 – ESA ASPIICS – CSL ROB – PI & <u>S</u>cience <u>Operation Center</u>

Calibration of ASPIICS

ASPIICS calibrations

- CSL/Liege 2021
- INAF/Turin Aug/Sept 2021
- ROB & INAF processing of the calibration data (33Gb archive)

What I did during ~1 year

- Dark frames
- Radiometric sensitivity
- Flat field
- Nonlinearity
- Polarization
- IO position
- PTC and gain
- Hot pixels

• Stray light – diffraction, scattering impossible to measure; models Shestov et al. 2018, 2019, 2021

Spectral passband

How to define radiometric sensitivity?

Geometric factor

Number of photons per pixel

$$N' = B \cdot \theta \cdot A$$

Aperture area S_{ap}

Pixel solid angle Ω_{pix}

$$N' = \boldsymbol{B} \cdot \frac{\pi D^2}{4} \left(\frac{dx}{f}\right)^2$$

units

$$A = \left(\frac{dx \cdot L}{f}\right)^2 \qquad \qquad \theta = \frac{\left(\frac{\pi D^2}{4}\right)}{L^2}$$

 $\begin{array}{ll} dx & -\operatorname{pixel size}, & \sim 10 \ \mu \\ f & -\operatorname{focal length}, & \sim 780 \ \mathrm{mm} \\ D & -\operatorname{aperture}, & \sim 5 \ \mathrm{cm} \\ L & -\operatorname{distance}, & \sim 1 \ \mathrm{a.u.} \end{array}$

Geometric factor

Transmissivity %

Detector sensitivity DN/photon

$$N = B \cdot \theta \cdot A \cdot T \cdot s$$

Detector

counts

$$A = \left(\frac{dx \cdot L}{f}\right)^2 \qquad \qquad \theta = \frac{\left(\frac{\pi D^2}{4}\right)}{L^2}$$

A

 θ

 $dx - pixel size, ~ 10 \mu$ f - focal length, ~ 780 mm D - aperture, ~ 5cmL - distance, ~ 1 a.u.

Radiometric sensitivity of ASPIICS

- Flat Field Panel (white LEDs)
- Calibrated photodiode
- ASPIICS takes images with different t_{exp} in different filters

aspiics_wb_I0_000000FD000111_00000033FE1247.fits

Vignetting by the barrels & holders

Internal occulter

defocused with a hole

aspiics_wb_I0_000000FD000111_00000033FE1247.fits

Exp. Time:	9.50 s						
Mean:	13473.8 DN						
APS Temp:	22,4 °C						
No files:	9						
Image mean:	15027. DN						
IO mean:	2310 DN						

Difference with EUV calib $N = B \cdot \frac{\pi D^2}{4} \left(\frac{dx}{f}\right)^2 \cdot T \cdot s$

- 1. Large & divergent source
- 2. Finite distance

Synchrotrons:

- extremely high intensity
- tunable wavelength via monochromators
- very collimated beam (i.e. ESFR 20 urad or 4 arcsec)
- small crossection of the beam few mm

Radiometric sensitivity and provisional data

С (F	F	G	Н				К	I	M	N		P
		-	Diode flux					FFP brightness		Photometric sensicivity A _k	Provisional P3- SOC-ROB-TN- 012***	Ratio		
Real filter	Measured flux I, DN/s		Diode current, A	Filter Transmission ^{*,} *	renormalized to filter peak transmission, A	Diode flux	., W	W mm ⁻² <u>sr</u> -1	W cm ⁻² <u>sr</u> ⁻¹	photon s ⁻¹ cm ⁻² sr ⁻¹	DIN sr cm ² photon ⁻¹	//		
Pol 0	1347 1		3 10E-07	0.72	4 32E-07	1 536	-06	7.34F-08	7.34E-06	2 02E+13	6.67E-11	7 50E-11	0.89	
Pol 60	1333.7	,	3.10E-07	0.72	4.32E-07	1.53	E-06	7.34E-08	7.34E-06	2.02E+13	6.61E-11	7.50E-11	0.88	
Pol -60	1337.4		3.40E-07	0.72	4.74E-07	1.68	E-06	8.05E-08	8.05E-06	2.21E+13	6.04E-11	7.50E-11	0.81	
Fe	231.8		1.20E-07	0.90	1.33E-07	4.90E	E-07	2.35E-08	2.35E-06	6.23E+12	3.72E-11	9.02E-11	0.41	
Не	924.9		3.00E-07	0.96	3.13E-07	1.03E	E-06	4.96E-08	4.96E-06	1.46E+13	6.36E-11	8.95E-11	0.71	
WB	1341.5		3.25E-07	0.97	3.35E-07	1.19E	E-06	5.69E-08	5.69E-06	1.57E+13	8.57E-11	1.04E-10	0.82	
	* average transmittance in peak is taken from corresponding xls file				[™] obtained as T*dS _{pk} *Ap*QE*g									
				** polarizers are des	cribed in Optical model								\bigcirc	
ed without	nonlinearity				Diode <u>coeff</u> . (<u>NIST</u> 568nm), A/W	0.	294							
Pol 0	1347.1				Diode <u>coeff</u> . (<u>NIST</u> 530nm), A/W	0.	271	A	$_{\rm k} = \Omega_p$	$S_{ix} \cdot S_{ap}$	$, \cdot T \cdot QE$	$E \cdot g$		
Pol 60	1333.7	,			Conversion E/B, W/(W mm ⁻² sr ⁻¹)	20).83		rical calculation	-				
Pol -60	1337.4			Dhoton onereu	550 <u>nm</u>	3.636E	E-19							
Fe	231.8			Photon energy	530 nm	3.7748	E-19	-						
Не	947.7			e-inchambua, s	587 <u>nm</u>	3.4076	2 -1 9	for exa	mple					
WB	1343								0.3	7				-
					<u>hc</u> , J*m	2.00E	2-25	Ω_{nix}	= 1.8	$\cdot 10^{-1}$	$^{.0}[sr]$	(2.81	arcse	$(c)^{2}$
				Photodiode se	NIST		Datashet IRD							
					wavelength, nm	sen	sitiv		S	$-\pi I$	$2^2 \approx 18$	$52 [cm^2]$		
					531	0.	271		Jap	$_{0} - \pi$	~ 10			
					568	0.	294	0.300			$(\circ $		F00()	
					674	0.	348	0.30	≈ 0.3	39	(0.	19 + ND	150%)	
				'=> calculated	for ASPIICS filters					1	_			
					530.45	0.	272			0	$E \approx 0.6$	65		
					550.00	0.	282			9 2				
					587.70	0.	303			$g \approx 0$	0.12 [<i>DI</i>	V/el^{-}]		
												Sh	estov et	

How to measure FFP brightness

$$I_{ph} = B \cdot A_{ph} \cdot \Omega_{ph} \cdot D$$

 A_{ph} – photodiode area Ω_{ph} – subtended angle D – sensitivity [Ampere/Watt]

- Photodiode has the same filter
- Biggest error subtended angle / photodiode entrance (!!!)
- Big discrepancy in the case of NBF filters
- Origin is not clear; B(V) has been used

Radiometric sensitivity

Conclusions:

- A_k measured for 6 filters
- 80-90% correspondence to theory
- Nonlinearity of DN vs t_{exp}

- Advantage in using extended diverging light source
- Biggest uncertainty photodiode stability & solid angle
- Unknown effect for narrow-passband filters

Nonlinearity

 5.0×10^{3}

0

 1.0×10^{4}

Input, DN

 1.5×10^{4}

Source of nonlinearity – conversion from electrons to DN

Nonlinearity corrected

Nonlinearity

Conclusions:

- The nonlinearity is attributed to the process of electron \rightarrow DN within the detector
- The nonlinearity function is within ±2%, below 5% at smaller signal;
- It was measured using WBF data
- Excellent results for other filters

Influence of the filter

FPA

Expected center: 1002.5, 1027.2 pix Expected R_{IO}: 385.7 pix

Fit of the limb with fit_limb() IO center: 1002.3, 1027.9 pix R_{IO}: 385.4 pix

- ~2 pixel shift of the IO center (!)
- slight wedge-shape of the filters

Summary

- Calibrations in Aug/Sep 2021 during ~3 weeks
- A-posteriory analysis of the calibration data
- Surprises in every characteristic

- Dark frames
- Radiometric sensitivity
- Flat field
- Nonlinearity
- Polarization
- IO position
- PTC and gain
- Hot pixels
- It would be better to discover them during the calibration campaign
- Comparison with theoretical model is essential
- Now we are aware of all these pitfalls & effects

• Radiometric calibration using large & divergent source

Thank you!