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Remember to look up at the stars and not
down at your feet. Try to make sense of what
you see and wonder about what makes the
universe exist. Be curious. And however
difficult life may seem, there is always
something you can do and succeed at. It
matters that you don’t just give up.

Stephen Hawking
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Preface

Applied statistics is at the foundation of data analysis, a discipline which uses
different kinds of methods to extract information from data. Hence, its two fun-
damental ingredients are the data and the techniques that can be used for clean-
ing, modelling or processing those data in order to find new evidences or support
decision-making. This thesis falls in this context and has two main purposes.
The first one is analysing, modelling the errors and monitoring the quality of the
sunspot counts over time. Those data form the basis of the world reference for
long-term solar activity: the International Sunspot Number. This index, despite
being widely-used in diverse fields such as astrophysics, space weather or clima-
tology and having gained increasing attention over the years, still lacks a proper
statistical modelling. Moreover, its processing is based on a single reference ob-
serving station. It is thus exposed to any anomaly that occurs in this reference.
Such a deviation arose for instance over the years 1981-2015 in the Observatory
of Locarno and required the recalibration of the ISN over this whole period. The
second main objective of this work is the construction of general non-parametric
methods to monitor panels of time-series data, including but not limited to the
sunspot counts. Those panel data are indeed common in many applications but
often miss a complete and robust treatment procedure.
This thesis is organized as follows.

Chapter 1: Overview
The first chapter gives an introduction to sunspot counts data as well as a descrip-
tion of the main motivations behind this work. The chapter begins by introducing
sunspots, their mechanisms of formation and main characteristics, which are often
presented in the form of physical laws. After this small introduction more related
to solar physics than to statistics, we move on to the description of the data them-
selves and review how they have been acquired/observed over the years. We also
introduce the International Sunspot Number, the world reference for long-term so-
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lar activity, which is directly related to the data that will be studied in this work.
After summarizing their main features, we present the motivations and the main
achievements of the thesis. The sunspot data will serve thus both as motivations
and examples to demonstrate the effectiveness of the methods that are developed
in the following.

Chapter 2: Uncertainty quantification in sunspot numbers
In the second chapter, we develop a comprehensive error model for the sunspot
numbers in a multiplicative framework. The model decomposes the data into a
physical signal, common to different observers, corrupted by three types of errors,
at short-term, long-term time periods as well as during solar minima. We provide
a complete analysis of the different terms of the model, including parametric fits
of their distributions. This model allows us to obtain more robust estimators of
the sunspot numbers and to provide errors for those data at each point in time. It
also highlights the long-term deviations that occurred in the past series of several
observing stations. Although specially adapted to the sunspot numbers, the model
may also serve as a source of inspiration for treating other datasets with similar
properties.

Chapter 3: Non-parametric monitoring of time-series panel data applied
to the sunspot numbers
This third chapter describes the construction of a non-parametric monitoring pro-
cedure based on control chart and support vector machine to efficiently detect the
deviations of sunspot numbers over time. The scheme is designed to work with
non-normally distributed and autocorrelated processes with potential missing val-
ues. It works at different scales and does not require any parametric assumption
about the data to correctly operate. This method allows us to automatically iden-
tify many deviations in the sunspot numbers, mostly unseen in previous analyses
and helps us to find the root-causes of some prominent shifts. As a result of the
present thesis, this control scheme will be implemented to monitor all observing
stations involved in the counting process, to prevent the future build-up of large
deviations over time, such as those previously observed.

Chapter 4: Neural-networks based monitoring of the sunspot numbers
In this fourth chapter, artificial neural networks are constructed for predicting the
sizes and shapes of the deviations occurring in the sunspot numbers. Feed-forward
but also recurrent networks, which are better suited to deal with time-series, are
designed. They are then coupled with simple cut-off values in the spirit of a She-
whart chart or with an adaptive CUSUM chart to trigger alerts when sufficiently
large deviations are detected in the data. Those methods are finally compared
with the non-parametric monitoring scheme previously developed. They appear to
outperform the previous method for identifying large or oscillating shifts, at the
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expense of a greater complexity. Depending on the target, different methods or a
combination of them can thus be used to solve applied monitoring problems.

Chapter 5: Application to photovoltaic production data with focus on
practical computational aspects
In the fifth chapter, the non-parametric monitoring scheme is applied to the pho-
tovoltaic energy production in Belgium. This allows us to present a package, writ-
ten in the programming language Python, which is associated to the monitoring
method. It also solves a second applied problem of practical importance and allows
us to start a new collaboration with Elia, the manager of high-voltage electricity
in Belgium.

Chapter 6: Automated sunspots detection on white light images
A preliminary version of an automated procedure to extract and count sunspots
from white light images is finally proposed in the sixth chapter. Contrarily to other
existing algorithms, the method is designed to work on ground-based images, which
share more properties with the sunspot observations than images recorded in space.
The procedure works correctly on images recorded from year 2011 to year 2020 for
identifying the number of spots. More research is needed to improve the method but
it shows sufficient potential to be further investigated. As with other automated al-
gorithms, the extracted numbers need to be rescaled to have a similar level as those
of the observations. This procedure is thus proposed as an alternative observing
method, automated and less prone to observer-related errors. It is not designed
to replace totally (and at least not before several solar cycles) manual observations.

Chapter 7: Discussion and Extensions
This last chapter summarizes the achievements and limitations of this work. It
also proposes several extensions and research perspectives, which close the thesis.
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Chapter 1

Overview

As the title suggests, this thesis is embedded in applied statistics. This field is at
the basis of data analysis and, as such, has numerous applications in almost all
existing areas (economics, politics, physics, psychology, informatics, etc.). The two
main ingredients of this discipline are the data, acquired via e.g. surveys or exper-
iments, and the methods that are applied to those data for extracting information.
Similarly, this thesis follows two equivalent tracks: one related to the data and
the other associated to the methods. These tracks, far from being separate, are
often entangled. The data serve both as motivations and examples to demonstrate
the effectiveness of the methods whereas the latter should be sufficiently robust to
adjust to the complex features of the former.
This thesis focusses in particular on one dataset that is related to the sunspot
counts. Those data serve as proxy for the long-term solar activity and are there-
fore used in many fields such as space weather, climatology or astrophysics. They
still lack however a proper uncertainty quantification and are subject to many de-
viations along time. The statistical treatment of those data will thus involve a
complete error modelling as well as a quality control of the various observing sta-
tions involved in the counting process. The development of such methods will then
lead to the construction of a general non-parametric monitoring, adapted to panels
of time series with low signal-to-noise ratio. This general method will finally be
applied to another dataset to solve a second applied problem. Starting from the
sunspot numbers, we will thus progressively develop a general method that can be
used to monitor many different data.

This introductory chapter begins by giving a general overview of sunspots and the
underlying physics at their origin in Section 1.1. The data and their challenges are
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then presented in Section 1.2. The chapter ends in Section 1.3 with a description
of the main objectives and achievements of the thesis.

1.1 Solar physics interlude

Sunspots are dark areas on the Sun, observable on white (or visible) light images.
They correspond to local zones that are cooler (around 4000-5000 kelvin) than their
surroundings (of around 6000 kelvin). They are associated to regions of enhanced
magnetic field. Their diameters vary between 1500-3500 km for the smallest spots
to more than 60000 km (Thomas and Weiss, 2008). Hence the largest spots are
visible with the naked eye and can be ten times larger than the Earth. They ap-
pear on the surface of the Sun, where they live between a few minutes to a few
weeks before decaying and disappearing. Sunspots have been observed since the
Antiquity. They were first reported in ancient China and Korea where they were
believed to be related to the emperor’s fortune. Regular observations of sunspots
started however more recently in the seventeen centuries with the invention of the
telescope by Galileo. They continue till the present days in several ground-based
observing stations disseminated across the world. As such, the counting of sunspots
constitutes one of the “longest-running scientific experiment” (Owens, 2013).

In Section 1.1.1, we briefly explain the main motivations behind the sunspot ob-
servations and the reasons why they are so carefully monitored today. Then, we
describe the main properties of sunspots in Section 1.1.2. Those will help us later
in Section 1.1.3 to understand the physical mechanisms behind the formation, evo-
lution and decay of the spots.

1.1.1 Observations of sunspots

Regular observations of sunspots were initially driven by pure research interest.
They led to major breakthroughs in the understanding of the Sun and of the
mechanisms that govern the magnetic field of stars in general. Around 1610, Galileo
discovered for instance the rotation of the Sun by observing the changes of positions
of the sunspots over time. He estimated the rotation period of the Sun at 27 days.
Closer observations reported later that the spots take around 25 days to rotate on
the Sun at the equator while those at higher latitude take a longer time (around
35 days near the poles), an effect called differential rotation. This phenomenon, as
we will see later, is now a key ingredient to understand the magnetic field of the
stars, which is at the basis of the formation and evolution of the spots. Afterwards,
George Ellery Hale observed in 1908 evidence of the presence of a magnetic field
in sunspots. This discovery represents a milestone of twentieth century astronomy
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(Choudhuri, 2015) since it was the first time that a magnetic field was observed in
another celestial body than Earth. It appears that most of the stars and planets
have magnetic fields. This finding opened therefore a new area in the history of
astronomy, by offering a new way to study distant objects in space.

Figure 1.1: Sunspot number (yearly average) represented on the period 1610-2012. Credit
to SILSO data/image, Royal Observatory of Belgium, Brussels.

Nowadays, the Sun is monitored continuously and sunspots are studied and ob-
served more than ever. This increase in interest is however more related to the
discovery of the first solar flare in 1859 by Richard Carrington than to preceding
breakthroughs. A solar flare is an explosive event that is characterized by a sud-
den increase in solar radiations emission. Flares are the most dramatic events that
occur in our solar system. They can last for several minutes to several hours and
are characterised by the intense emission of radiations in the entire electromag-
netic spectrum. They are also often associated to coronal mass ejections (CME),
a phenomenon where a significant amount of charged particles are accelerated and
ejected from the solar atmosphere. They propagate then into space and become
part of the solar wind. When those charged particles reach the Earth magnetic
field, they interact with it and may cause geomagnetic storms, i.e. temporary
variations in the Earth magnetic field. They produce beautiful aurorae that are
harmless but can also badly damage our electronic infrastructure by inducing huge
currents in the power grid.
The solar eruptions, which include flares and CMEs, can thus have drastic impacts
on Earth. The CME associated to the flare detected in 1859 by Carrington pro-
duced for instance significant damage to the telegraph system, the most advanced
electrical technology of that time. Another important solar eruption appeared
later on March 9, 1989 and caused a power blackout of several hours on the 13th
of March 1989 in Canada, close to the geomagnetic pole of the Earth. Today, large
solar eruptions cause disturbances in the upper layers of the atmosphere, which
may perturb the radio communication of Earth or badly affect the instruments of
planes. They can also damage electronics on boards of satellites that are responsi-
ble for diverse tasks as varied as broadcasting television or providing signals to the
global positioning system (GPS). Those are protected for this purpose at heavy



4 Chapter 1. Overview

cost. Solar eruptions can also be harmful to the astronauts orbiting around the
Earth. A major solar eruption directed toward the Earth could still trigger nowa-
days billions of dollars of damage by destroying the internal structures of most of
our electrical equipment. In a society governed by technology, it appears thus more
and more important to accurately monitor solar activity.
With the actual understanding of solar physics, the level of accuracy needed for
efficient operational predictions of solar flares or CMEs has not yet been reached.
We do know solar flares tend to happen mostly above regions of high magnetic
fields, which are most often associated to active regions (i.e. sunspots). Those
active regions are easily observable since they are more stable than the solar erup-
tions (their lifetime may extend up to several weeks) and appear in visible light.
Therefore, one way to monitor the explosions of the Sun is to closely observe the
spots. In 1855, Heinrich Schwabe discovered that the number of sunspots follows
a quasi-periodic cycle of mean period equal to 11 years. This cycle, approximately
regular, varies however in shape, duration and intensity as can be seen in Figure
1.1. It is a direct manifestation of the solar activity. Hence, the observations of the
spots also indicate the periods where the solar eruptions are the most likely to hap-
pen: at solar maxima, when the spots are numerous and the solar activity is intense.

If solar eruptions can have a dramatic impact after few minutes or few days (de-
pending on the type of particles that are emitted), changes in solar activity can
also influence Earth over long periods. As an example, the period between 1640
and 1720 is known as the Maunder minimum, a time span where solar activity
was very low with almost no spots on the surface of the Sun as can be seen in
Figure 1.1. Although it is still a matter of study (Owens et al., 2017), this peculiar
epoch appears to be linked to the small ice-age that happened in the late seven-
teen century on Earth. Multiple sources mention that this period was particularly
cold, with severe winters in Europe. Therefore, a change in solar activity has also
the potential to influence the climate of Earth. One hot research topic is now to
understand the mechanisms behind the solar cycles and predict the strength of the
next cycles.

1.1.2 Properties of sunspots

Before describing the mechanisms governing the sunspots’ life, we review the main
properties of the sunspots, which are often expressed in the form of physical laws.
These laws appear as constraints that a physical model of the sunspots must ex-
plain. They will thus help us later to apprehend the basis of such a model.
The magnetic field of sunspots was first discovered in 1908 by Hale. It is equal to
0.3 tesla inside the largest spots. This field is quite strong for the human scale.
As a comparison, the Earth magnetic field is about 3.2× 10−5 tesla. Hale and its
co-workers also found that sunspots appear in pairs of opposite polarity. Figure 1.2
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a: White light image b: Magnetogram

Figure 1.2: Image of the Sun taken on 8 February 2001 by the SOHO instrument in white
light (left) and its corresponding magnetogram map (right).

shows a magnetogram map of the Sun, i.e. an image that captures the magnetic
field at the surface of the Sun at a particular instant. The regions of positive po-
larity are represented in white whereas the areas of negative polarity are displayed
in dark. Both regions are concentrated around the sunspots. The grey background
represents the other parts of the Sun, where the magnetic field detected by the
instruments is much weaker. By looking closely at the figure, we observe that
white regions are located at the right of the dark areas in the northern hemisphere
whereas in the southern hemisphere, the white zones are situated at the left of the
dark patches. This configuration remains the same for one complete solar cycle but
reverses at the next cycle. This effect is named Hale’s polarity law and is related
to the 22-year magnetic cycle of the Sun. The 11-year solar cycle, which was first
unravelled by counting the number of spots, is a direct manifestation of this longer
cycle of 22 years. The latter was found afterwards, by observing the magnetic field
of the Sun in addition to the spots.
Richard Carrington, who also observed the first solar flare, discovered later another
effect linked to the drift of the sunspots. At the beginning of a solar cycle, the
spots appear on the Sun at around 30◦ of latitude, on both sides of the equator.
Then, as the time goes, the spots are created at lower and lower latitudes until
appearing close to the equator at the end of the cycle. When the next cycle begins,
the spots emerge once again close to 30◦ of latitude. This phenomenon is repre-
sented in Figure 1.3, where the latitude of the spots is displayed as a function of
the time in what is called a butterfly diagram. It is known as Spörer’s law (named
after Gustav Spörer who studied this effect more systematically than Carrington).
A third law was discovered afterwards by Alfred Joy, who observed that the right
spot of a pair, which is called the leading spot, appears to be closer to the equator
that the left spot, called the following spot. In other words, if we draw a straight
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Figure 1.3: The magnetic field of the Sun by latitude represented as a function of
the time. This plot is referred to as a butterfly diagram. The figure is taken from
http://solarscience.msfc.nasa.gov/images/magbfly.jpg, courtesy of D. Hathaway,
NASA/MSFC.

line between the centre of the following spot to those of the leading spot, the line
is not perfectly aligned with the equator but is tilted by a small angle. This angle
appears to increase with the latitude of the spots, following what we call Joy’s law.

As stated before, these laws should be explained by a physical model of the Sun
magnetic field and will guide us through the construction of such a model. Know-
ing the basic properties of sunspots is however already beneficial for understanding
their physical nature. A sunspot is created by the emergence of magnetic field lines
across the surface of the Sun, as schematically represented in Figure 1.4. The field
lines pierce the surface in two different places creating a pair of spots. Where lines
emerge from the surface we observe a positive polarity whereas where the lines go
back to the solar interior we see a negative polarity. The sunspots emerge thus
usually by pairs of opposite polarity, as first observed by Hale and its team. In
these areas, the tensions of the intense magnetic field lines prevent the convection
of the charged particles that come from the solar interior where the fusion takes
place. The heat transport is then decreased in the sunspots with respect to other
regions of the Sun where the convection is effective. This effect leads to a drop in
temperature inside the spots. Since the luminosity of a region of the Sun depends
quadratically on its temperature, the sunspots appear as dark areas on the surface.

http://solarscience.msfc.nasa.gov/images/magbfly.jpg
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Figure 1.4: Schematic representation of the field lines that form a sunspot. The “L”
denotes the leading spot whereas the “F” corresponds to the following spot. The figure is
taken from Choudhuri (2015).

Figure 1.5: Image of a spot with an umbra and penumbra. This image was obtained in
the continuum near 436 nm with the Swedish Solar Telescope on La Palma. (Courtesy of
L. H. M. Rouppe van der Voort and the Royal Swedish Academy of Sciences.)
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The sunspots are themselves composed of two parts: an umbra and a penumbra.
Those are represented in Figure 1.5. The umbra is the darkest part of the spot, it
corresponds to a region where the magnetic field lines are vertical to the surface.
The penumbra is on the contrary lighter, warmer and is associated to field lines that
are more inclined. Note that the smallest spots, called pores, are only composed
of an umbra.
The emerging field lines can appear as two sunspots of opposite polarities. Most
of the time however, the field lines emerge and create two clusters of sunspots of
opposite polarities. They are called as a whole a “sunspot group” or “an active
region” on the Sun. The groups may thus contain more than two sunspots and
have widely different characteristics such as their number of spots, their size, the
type of their spots (with or without penumbra), etc. We refer to McIntosh (1990)
for illustrating the large variety of sunspot groups. Those are usually more difficult
to identify than individual spots.

1.1.3 Introduction to magnetohydrodynamics

The formation, evolution and decay of sunspots are governed by the laws of physics,
in particular the electromagnetism and the physics of the plasma. A plasma is the
fourth state of matter. When the matter is heated to a sufficiently high temperature
in the Sun, the matter becomes ionized, i.e. the electrons are extracted from their
atom. The matter is then composed of a soup of electrons and ions, which is
called a plasma. If the plasma is electrically neutral, it is strongly sensitive to the
influence of any electric or magnetic field (a plasma is a very good conductor).
The branch of physics which studies the interaction of a magnetic field inside a
plasma is called magnetohydrodynamics, abbreviated by MHD. In this subsection,
we briefly sketch some of the main concepts of MHD without entering in too much
details and without presenting MHD complex equations.

Oscillating mechanisms

To explain the appearance of spots with opposite polarity in each hemisphere, the
magnetic field lines of the Sun should be wrapped around its rotation axis and
should have opposite directions in each hemisphere. Therefore the magnetic field
of the Sun should have what is called a toroidal component. The Sun also has
a poloidal magnetic field, with opposite polarity at each pole, that is similar to
those of Earth. It was first detected in 1955 by Harold and Horace Babcok. Both
fields are represented in Figure 1.6. Continuous observations reveal later that the
polarity of the poloidal field reverses after a period of eleven years (i.e. the negative
pole becomes positive and conversely), forming the 22-year magnetic cycle of the
Sun.
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Figure 1.6: Schematic representation of a toroidal and a poloidal field. The figure is taken
from Choudhuri (2015).

In 1955, Eugene Parker proposed a ground-breaking explanation for the magnetic
cycle of the Sun, which also explains the formation and evolution of the spots.
His theory is based on different mechanisms that convert the poloidal field into the
toroidal magnetic field of the Sun and vice-versa, creating oscillations between both
components of the field (Parker, 1955). These oscillations between the toroidal and
poloidal fields can be “observed” a posteriori (these observations were not available
for Parker in 1955) in the magnetic configuration of the Sun over time, by looking
once again at the butterfly diagram of Figure 1.3. Starting at the solar minima
(the period of minimal activity in a 11-year solar cycle) of 1986, we observe that
the north pole has a strong negative polarity while the south pole is strongly
positive. According to our intuition, the poloidal field should be large when there
are few spots on the Sun, since those are rather formed by the toroidal field. The
number of spots was indeed close to zero in 1986. As the time goes, the poloidal
component weakens while the toroidal field grows, creating more and more spots.
When the solar maxima (the period of maximal activity in a 11-year solar cycle)
is reached in 1989, the poloidal field is close to zero whereas the toroidal field
is maximum, producing many spots. Then the situation slowly reverses in the
descending part of the solar cycle. The toroidal field diminishes, creating less
and less spots whereas the poloidal field grows again, with opposite polarity with
respect to the previous cycle. This continues until the next solar minima in 1997
where the toroidal field becomes once again close to zero. The poloidal field peaks
then at a (local) maximum, with a positive value in the north pole and a negative
value in the south. The same mechanisms are then repeated in the next cycles.
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From a poloidal field toward a toroidal field

Figure 1.7: Schematic representation of an initial poloidal field (represented on the left
panel) transformed into a toroidal field (represented on the right panel) in the Sun by the
differential rotation. The figure is taken from Choudhuri (2015).

In Parker’s theory, two mechanisms are thus involved. The first one explains how
the poloidal field can be transformed into a toroidal component while the other
describes how a toroidal field can produce a poloidal field.
The first mechanism in which the poloidal field of the Sun is transformed into a
toroidal field is related to the differential rotation of the Sun. As explained previ-
ously, all parts of the Sun do not rotate at the same velocity around the rotation
axis since the Sun is not solid but is composed of a plasma of particles. The
equatorial regions rotate for instance faster than the poles. Complex observations
based on helioseismology (the study of the vibrations of the Sun) demonstrated
that the rotation velocity also changes within the solar interior. Therefore, as the
time goes, the differential rotation progressively stretches and wraps the field lines
of the poloidal field around the rotation axis to create a toroidal field, as sketched
in Figure 1.7. As can be seen in the figure, the resulting toroidal field has opposite
direction in each hemisphere, as expected to reproduce the Hale’s polarity law of
the sunspots.

The upper layer of the solar interior is the convection zone. It is a region where the
heat that comes from the solar interior (where nuclear fusion occurs) is evacuated
by convection, i.e. by a transport of matter. After creation by the differential
rotation of the Sun, the toroidal magnetic field lines are aggregated in the form of
magnetic flux tubes by their interaction with the plasma in the convection zone.
These tubes have a balanced pressure with their surrounding (otherwise their cross-
section would shrink or expand until such balance is reached). This pressure is only
due to the pressure of the plasma outside the tubes while the pressure inside the
tubes is due to both the pressure of the plasma and the magnetic pressure of the
field. This implies that the internal pressure of the plasma should be lower inside
the magnetic flux tubes than outside. This can happen if the density of the plasma
is lower inside the tubes. Following Archimede’s principle, the tubes that are im-
mersed in a plasma of higher density become buoyant. They rise up and emerge
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from the surface, creating active regions (or sunspot groups).

During their ascension, the magnetic flux tubes are also subject to the Coriolis
force. This force acts on any object or body which moves on a rotating frame.
The Coriolis force has for instance a strong effect on the oceanic and atmospheric
circulation on Earth. It makes, amongst many other phenomena, the atmospheric
cyclones rotating in opposite sense in each hemisphere. This same force deviates
the magnetic flux tubes that are created near the equator — where the differential
rotation of the Sun has the highest rate — such that they emerge around 30◦ of
latitude at the beginning of the solar cycle. It also causes the tilt angle of the pairs
of spots that are described by Joy’s law (D’Silva and Choudhuri, 1993).

From a toroidal field toward a poloidal field

Figure 1.8: Schematic representation of the mechanism transforming an initial toroidal
field into a poloidal field in the Sun. An initial pair of sunspots (represented on the left
panel) is progressively dispersed by the turbulent motions of convection zone in two larger
regions (represented on the right panel). The magnetic field in those regions spreads from
its initial configuration in form of tubes and diffuse to its surroundings. The figure is
taken from Choudhuri (2015).

To complete our sketch of the dynamo theory, we need to understand how a toroidal
field gives rise to a poloidal field. Otherwise, even if the Sun had an initial poloidal
magnetic field, it would eventually decay due to the differential rotation of the Sun.
Therefore, a second mechanism should be involved to recreate a poloidal field from
the toroidal component. This second effect, called Babcock-Leighton mechanism
(Babcock, 1961; Leighton, 1969), is linked to the turbulences of the convection
zone. When sunspots appear on the surface, they live for a few hours to a few
weeks before decaying. The turbulent motions of the convection zone eventually
disperse the magnetic field concentrated on the tubes inside the spots into larger
regions, making the sunspots progressively disappear. Since a pair of spots is tilted
by a small angle (following Joy’s law), two regions of opposite polarity are then
created, at different latitudes. The resulting field lines, after being dispersed by
the turbulent motions, have a poloidal component. This is represented in Figure
1.8, where the leading (right) spot is assumed to have a positive polarity.
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If several spots with similar configuration (i.e. a positive polarity at lower latitude
and a negative polarity at higher latitude) decay in the same way, large bands of
opposite polarity will be progressively created around the equator. Those bands
will therefore produce a large-scale poloidal field that is much weaker than the
magnetic field of the spots but still measurable from Earth.

a: Meridional circulation

b: Polar magnetic field reversal

Figure 1.9: The upper figure represents the meridional circulation of the Sun. The lower
figure shows the transport of the bands of magnetic fields toward the poles by the merid-
ional circulation. When a band of opposite polarity reaches the pole, the polar magnetic
field reverses. The figure is taken from Choudhuri (2015).

The turbulent motions in the convection zone also create a large-scale flow of
plasma close to the surface of the Sun. This flow is called the meridional circula-
tion. It progressively carries the bands of magnetic field towards the poles like a
giant conveyor belt, as can be seen in Figure 1.9a. When a band of opposite polar-
ity reaches the pole, the Sun polar field reverses its polarity. This is illustrated in
Figure 1.9b, where the pole has an initial positive polarity. When the band of neg-
ative polarity finally reaches the pole, the Sun polar field reverses and gets negative.



1.1. Solar physics interlude 13

A part of the meridional circulation conveys the plasma to the poles. Since the
plasma cannot be agglomerated to a small region forever, another flow should
transport the plasma back from the pole toward the equator. This second flow was
detected by the helioseismology and takes place at the bottom of the convection
zone. Therefore, the meriodional circulation transports the plasma from the equa-
tor toward the pole at the top of the convection zone, near the surface. The plasma
then sinks at the pole and goes back to the equator at the bottom of the convection
zone where it emerges again to the surface. This is illustrated in Figure 1.9a. This
journey back from the pole to the equator causes a progressive drift of the sunspots.
Those first emerge around 30◦ of latitude at the beginning of the sunspot cycle.
Then, they appear progressively at lower latitudes as the toroidal field produced by
the differential rotation of the Sun is transported toward the equator by the merid-
ional transport during the cycle. The meridional circulation thus also explains the
equatoward drift of the spots described by Spörer’s law (Choudhuri et al., 1995).

Complete solar cycle explained

We are now able to understand the solar cycle more deeply. Let us begin once
again in the solar minima of 1986. At the beginning of the cycle, the poloidal field
is maximal whereas the toroidal field is close to zero. There are few or even no
spots on the Sun. As time passes, the poloidal field is progressively transformed
into a toroidal component by the differential rotation of the Sun. The toroidal
field gets trapped into magnetic tubes that becomes buoyant and emerge at the
Surface of the Sun around 30◦ of latitude, creating pairs of spots. More and more
spots are progressively created as the cycle continues. These spots decay due to the
turbulent motions of the convection zone (Babcock-Leighton mechanism). They
create gradually large bands of opposite polarity around the equator that have a
poloidal field. These bands are then slowly transported toward the pole by the
meridional circulation until the pole finally reverses its polarity slightly after the
solar maxima of 1989, where the toroidal field is maximal and the poloidal field is
close to zero. Then, the poloidal field builds up again with the decay of the spots
while the toroidal field weakens. Less spots are created. They also emerge closer
to the equator due to the meridional transport. The next solar minima is then
reached in 1996. At this point, there are almost no spots visible on the Sun. The
poloidal field is maximal again whereas the toroidal field is close to zero. The same
mechanisms are then repeated over the next cycles.

This completes our small introduction to solar physics. Most of the concepts and
images of this section come from the book Nature’s third cycle, a story of sunspots
from A.R. Choudhuri (Choudhuri, 2015). We strongly recommend this book to
anyone who is interested in sunspots and solar physics. It is intelligible for every-
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body, with or without background in physics, and contains interesting references
for further reading.

1.2 Data

After this small interlude in solar physics, we may now introduce the data that
will be studied in this work. Those represent the number of spots and the number
of sunspot groups. They have been observed and counted since the 17th century
in different observing stations around the world. The methods and the challenges
associated to the observation of sunspots from Earth over such long time periods
are thus first presented in Section 1.2.1. Then, we explain in Section 1.2.2 how
these numbers are assembled to form the International Sunspot Number: the world
reference index for long-term solar activity. The section ends with a description of
the main features of the sunspot number data.

1.2.1 Observing conditions

The sunspots are observed everyday in several ground-based observing stations
disseminated around the world. Those are composed of either single observers or
teams and can be professional or amateurs. Note that we designate the different
stations by the term “observing station” whereas the terminology “observatory” is
reserved for the professional ones. To preserve the continuity of the series, the
observing methods have not changed much with time. The number of sunspots Ns
and sunspot groups Ng are still today manually counted on a daily basis, either by
direct observation of the Sun through a telescope or based on a projected image
of the Sun taken at a particular instant, by e.g. a charge-coupled device (CCD)
camera.
Although the sunspot records date back to a few centuries ago, this work focusses
on the most recent part of the series. The period under study extends from the
mid 20th century till today. In this time-span, the data are composed of the daily
observations of the World Data Centre Sunspots Index and Long-term Solar Obser-
vations (WDC-SILSO) network, which contains now around 300 stations. Earlier,
this network was much smaller. Past records also contain many more observational
gaps that require specific treatments. Hence, the data before the mid 20th are the
subject of a dedicated analysis and will not be studied here.

Although the observation of sunspots started years ago, it still remains surpris-
ingly difficult to arrive at an accurate determination of Ns and Ng. Three main
difficulties stand out: (a) observability, (b) resolution and (c) interpretation.
(a) For ground-based observations, the Sun cannot be observed when there are
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atmospheric perturbations such as clouds. Those depend on the location of the
station, which may change with time. The observed series from different stations
also cover different time periods. (b) The instruments often have different resolu-
tions, which may give rise to different counts of sunspots. There may also be shifts
in the observed numbers due to changes of instruments. Moreover, the counting
process can be done using a single digital image of the Sun from a CCD camera or
based on the direct observation of the Sun through a telescope. This latter tech-
nique has often a smaller resolution since the counting is performed over a small
period of time, which is similar to take many images of the Sun into account in the
counting process. (c) The sunspots have complex shapes that vary with time and
they may overlap. Distinguishing sunspots and groups of sunspots therefore require
experience. Even experts sometimes disagree. Moreover, different observers may
vary in skill and their skills may vary over time (due to e.g. decrease of eyesight).
Some stations observe thus systematically more sunspots than others.
In addition to the observer-related variations, there are also intrinsic sources of
variability. Some sunspots are only visible over short periods. Their number may
therefore change during the day. Furthermore, sunspot activity itself is subject to
substantial variability at multiple time-scales, with the most prominent example
being the 11-year solar cycle.

Those effects, either observer or solar related, induce large variabilities in the ob-
served data. This is reflected in Table 1.1, which summarizes the properties of a
subset of 21 stations that is used in the first part of this work. The table contains
different features of the stations such as their location, name, type (amateur vs
professional, individual vs team), observing period, percentage of missing values,
and mean scaling-factor (level) with respect to the network over the period 1947-
2020. It gives an overview of the various observing conditions of the network.
The mean scaling-factors may be viewed as an indication of the general level of
the counts recorded by a station as compared to the median of the network. It
may be related to the instrument or the counting method of the stations. level = 1
corresponds to a station that observes the same number of spots than the median
of the network. The Observatory of Locarno (LO) with a level of 1.26 observes for
instance around 20 % more spots than the others. The location of the stations gives
an indication of the weather conditions of the stations. It might thus explain part
of the missing values. Moreover, the type of stations usually impacts the quality of
observations and the length of observing periods: an individual might experience
less short-term variability than a team (alternating the observer from one week to
another) and/or amateurs may have shorter observing periods than professionals.
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1.2.2 International Sunspot Number

Figure 1.10: Time evolution during 1947-2013 of the median values across 21 observing
stations (cf. Table 1.1) for the sunspot counts: (top) Ns, (centre) Ng, and (bottom) Nc.
The data are averaged over 81 days (black dotted line), 1 year (red dashed line) and 2.5
years (blue plain line).

In addition to the number of spots and the number of groups, a third quantity will
be analysed in the following. This number, denoted Nc, was introduced in 1848 by
J.R. Wolf from the Zürich Observatory. It is obtained by summing up the number
of sunspots with ten times the number of sunspots groups on a daily basis:

Nc = 10Ng +Ns. (1.2.1)

Nc contains information about Ns and Ng, as it appears that only one of those
quantities cannot fully describe the solar activity. Both numbers are thus required.
The multiplication factor in (1.2.1) was introduced by J.R. Wolf to put the number
of groups on the same scale as the number of spots. Indeed, during this historical
period, a group contained on average ten spots (Izenman, 1985). On the contrary
in recent solar cycles, the average number of spots per group is rather around six.
Figure 1.10 displays smoothed averages of the median value of Ns, Ng and Nc
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across the set of 21 stations presented in Table 1.1.

Figure 1.11: Flowchart of the WDC-SILSO data import procedure, illustrating the suc-
cession of hierarchical tests applied to raw observing reports (adapted from Clette et al.
(2007)).

The Wolf number Nc, also called ‘composite’, is at the basis of the International
Sunspot Number (ISN): the reference index for long-term solar activity. The ISN
is distributed through the World Data Centre Sunspots Index and Long-term Solar
Observations (WDC-SILSO)1. The Table 1 of Dudok de Wit et al. (2016) describes
how the processing of this reference index evolved over time. This table shows for
instance that between 1926-1981, the index was computed as the average of the
composites (Nc) collected by several standard observers from the same station.
When no observation could be done in this station, the index was then computed
using data from auxiliary observatories. In 1981, the sunspot collection centre
moved to Belgium where it still resides nowadays. The index was then computed
as a weighted average over a network of several stations, as it is today. It was
named ’International Sunspot Number’ to be distinguished from previous versions.
This name also emphasizes that the ISN is obtained from a whole network of sta-
tions.

Nowadays, Ns and Ng are first entered through an interface2 and stored in a
database. The Ncs from each observing station in the WDC-SILSO network are
then computed and rescaled, i.e. multiplied by a factor, to compensate for the

1http://www.sidc.be/silso/
2www.sidc.be/WOLF

http://www.sidc.be/silso/
www.sidc.be/WOLF
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differing observational qualities of the stations. The rescaling uses a single pilot
station, currently the Observatory of Locarno in Switzerland, as a reference. It
compares the values obtained by a station i to the pilot station via a scaling-factor
ki, often referred as the ‘k-coefficient’:

ki(t) =
pilot(t)

Yi(t)
, (1.2.2)

where Yi(t) denotes here the composite index of a station i, observed at time t
(expressed in days) and pilot(t) is the value of the pilot station. The monthly
scaling-factors are computed from a sigma-clipping mean of (1.2.2), i.e. values dif-
fering by more than two standard deviations from the mean are eliminated from the
computation process. The Ncs are then combined on a monthly basis to produce
the ISN (Clette et al., 2007), which constitutes the world reference for modelling
solar activity on the long-term. Its main processing is described in Clette et al.
(2007) and we summarize a more recent version of it in Figure 1.11.
The ISN is now one of the most intensely used time-series in astrophysics (Hath-
away, 2010). It enters in a large variety of physical models such as those of the
Earth climate (Haigh, 2002; Ermolli et al., 2013) as well as in space weather pre-
dictions (Temmer et al., 2001; Wang and Colaninno, 2014).

Despite its numerous usages however, the ISN (and its processing) still suffers from
its historical heritage. For instance, as an index derived from count data, Nc (or Ns
and Ng) does not necessarily follow a Gaussian distribution (Dudok de Wit et al.,
2016; Usoskin et al., 2003; Vigouroux and Delache, 1994). A processing based on
sigma-clipping is thus not fully adapted to produce the ISN. Due to the many
sources of variability that are present in the data, the single pilot station is also
not fully appropriate to rescale the stations. This single pilot could for instance
experience long-term deviations and cause a drift of the ISN over time. Such a
drift appears for instance in the Observatory of Locarno, the actual reference and
requires the recalibration of the ISN over 1981-2015 (Clette and Lefèvre, 2016).
Some part of the processing also dates back from the mid-19th century, when J.R.
Wolf introduced the sunspot index. They have not been upgraded when the collec-
tion and preservation centre was moved from Zurich to Brussels in 1981 since (a)
the new curators of the ISN wanted to keep the uniformity of the series and (b)
the numerical tools available at that time were limited.

Thanks to recent progress in statistics and data processing, it is now possible to
improve the procedures at the basis of the ISN. We can now produce, using modern
techniques, an index that is more closely related to the actual solar activity while
being at the same time robust against the errors of an individual station. Such a
task is complex however and should be done in successive stages. The variability
and the statistical nature of Ns, Ng and Nc, the building blocks of the ISN, should



20 Chapter 1. Overview

be first studied. Robust estimators for the three numbers may then be constructed.
Once such estimators will be constructed, an effective monitoring procedure may
then be established to control the stability of these numbers over time. It is only
after completing these two steps that the definition of the ISN may be properly
upgraded.
The first main objectives of this work are therefore to address these two challenges,
with final aim to improve the computation of the ISN.

1.2.3 Features of the data

We focus in the following on the study of Ns, Ng and Nc, which are generically
designated by sunspot numbers in the following. Since these quantities are observed
in different stations, their analysis also opens new perspectives with respect to a
single-value index such as the ISN. They allow us to use, among other things, the
large variety of longitudinal data analysis tools.
As previously seen, the sunspot numbers are composed of a panel of observations
which have complex features. The main characteristics of the data (for Ns, Ng as
well as Nc) are summarised below.

Non-
Normality

As indexes derived from counts, the data are by nature non-normally dis-
tributed. They also experience an excess of zeros due to long periods of solar
minima where they are few or even no spots on the Sun. Modelling the statis-
tics of Nc is also far from trivial, since this quantity jumps from zero to eleven
when a sunspot appears on the Sun (Ns = 1, Ng = 1, and thus Nc = 11).

Missing
values

As Table 1.1 indicates, the data also present an important amount of missing
values. The weather conditions account for most of the short-term missing
values while the non-overlapping time periods of the stations are responsible
for the largest gaps in the series.

Correlations The stations are correlated across the panel. They are also correlated along
the time since the spots stay from several minutes to several weeks on the Sun
surface, depending on their size. The lifetime of the spots is indeed related
to the strength of magnetic field lines at their origin.

No
reference

Due to the observer and solar related variabilities, all stations are expected to
contain various errors and biases. No single station can therefore be consid-
ered as a reliable reference for the actual number of spots, groups or composite
on the Sun.

Various
deviations

The data contain many errors which have various origins and differ sub-
stantially in shapes and sizes. The methods developed in this work should
therefore be sufficiently robust to adapt to the low signal-to-noise ratio of the
data.
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1.3 Aims of the thesis

As stated previously, the ISN still suffers from a number of historical errors and
inconsistencies. Some of them have been partly addressed by the recalibration of
the ISN in 2015 (Clette and Lefèvre, 2016). Even the most recent part (1981-now)
of the series lacks however a proper error modelling. The WDC-SILSO team is
currently working on improving the ISN computation and coordinates an impor-
tant community effort to correct past errors. This thesis has been created in this
context, to address the specific problems of the most recent part of the series.
The main contributions of this work are therefore two-fold (one-fold for the data
and one-fold for the method). Our first contribution is related to the specific
dataset that is studied here: the sunspot numbers. Our main objective is to go
beyond the aforementioned historical heritage and propose a thorough statistical
treatment of the building blocks of the ISN: Ns, Ng and Nc. This includes the
development of a comprehensive uncertainty model for the sunspot numbers as
well as the construction of a robust monitoring procedure for supervising the qual-
ity of these numbers over time. Then, the second main contribution of this work
focusses on the statistical methods. It is related to the development of a general
non-parametric monitoring procedure, which can be applied to different panels of
time-series for quality control.

To this end, we first develop in Chapter 2 a comprehensive uncertainty model
for Ns, Ng and Nc. This model is motivated by studies in Dudok de Wit et al.
(2016) and works within a multiplicative framework. It distinguishes three types
of errors and includes robust estimations of the physical solar signal underlying
Ns, Ng and Nc. Those can be used as references for the network and may later
replace the single pilot station in the processing of the ISN. Although adapted to
the sunspot numbers, the model may serve as a source of inspiration for analysing
other datasets, as will be seen in Chapter 5.
The study of the long-term error developed in Chapter 2 reveals that some sta-
tions experience severe deviations over time. It highlights the need to establish an
automated tool for supervising the observations continuously and maintaining the
quality of the series over the years. To this end, we construct in Chapter 3 a mon-
itoring procedure for all stations within the WDC-SILSO network. This method
consists of three steps: (1) smoothing the data on multiple timescales, (2) moni-
toring them using block bootstrap calibrated CUSUM charts for detecting various
kinds of deviations (such as sudden jumps or progressive drifts) and (3) classifying
the out-of-control situations by using support vector techniques.
The monitoring is applied on past data where it allows us to investigate the causes
of some prominent deviations that affect the series. Furthermore, the procedure
will be soon implemented for the quasi-real time monitoring of the stations. It is
designed to alert the observers when they start deviating from the network and
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therefore prevent the build-up of large drifts.
In Chapter 4, other control schemes based on artificial neural networks are designed
for the same purpose. After comparison with the monitoring procedure previously
developed, these alternative methods appear to better perform for identifying large
or oscillating deviations. The different methods could therefore be used jointly, to
detect more effectively the various kinds of the deviations in the sunspot numbers.

The monitoring procedure that is developed in Chapter 3 is robust and non-
parametric. It is also tailored to handle the missing values. This method can
thus be applied in a large variety of situations not related to the sunspots. It is
adjusted in Chapter 5 to the photovoltaic energy production in Belgium, as one
example. This illustrates how the method can be applied to monitor other panels
of time-series. The complete method is implemented in the Python programming
language and proposed as a general package, available on Github3. A description
of the package is thus also provided in the chapter.
As additional contributions, we propose in Chapter 6 a preliminary version of a
method to automatically extract the number of spots (Ns) and groups (Ng) from
ground-based images of the Sun. This method requires less human intervention
and is also less variable than manual observations. Contrarily to other existing al-
gorithms, it works on images obtained from the ground, which share many features
with the observed numbers. It is designed to be used jointly with the observations
and provide numbers corrupted by fewer observer-related errors. More research
is needed to obtain a fully-operational method but the proposed algorithm shows
sufficient potential to be further investigated.

This thesis is thus organized into seven chapters, including the introduction of
Chapter 1 and the conclusion of Chapter 7. The proposed structure is to separate
the more developed contributions (Chapters 2, 3, 4 and 5) from methods that are
in early development (Chapter 6). The chapters are also presented by increasing
degree of automation, which is defined here as all procedures that work to reduce
human interventions. We first present the model of the sunspot numbers in Chap-
ter 2. To be fully explored, this model requires many separate analyses (one for
each term of the model). Those are hard to automate and take some time, espe-
cially the numerous fits of the distributions. Then, we present in Chapter 3 the
monitoring method (often called “CUSVM” method), which is more computerized.
It is composed of different algorithms which, once implemented, can be called as
many times as wanted. A neural network (NN) based monitoring is then presented
in Chapter 4 and requires even less input from the user, due to the high flexibility
of the networks. It is followed by Chapter 5, presenting the package associated
to the CUSVM method. The package takes one step further toward automation,
by allowing an easy and compact installation and use of the method. Finally,

3The package is available at the following link: https://github.com/sophiano/cusvm.

https://github.com/sophiano/cusvm
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Figure 1.12: Diagram of the thesis.

Chapter 6 proposes a method to automatically retrieve the sunspot numbers from
ground-based images of the Sun. It thus extends the automation not only to the
monitoring methods but also to the observations themselves.
As stated at the beginning of the chapter, the thesis also follows two tracks, related
to the data and methods. In this regard, Chapters 1 and 5 are related to the data
whereas Chapters 2, 6 and especially 3 and 4 focus more on the methods. There
are thus several ways to structure this thesis, as it is represented in Figure 1.12.
By looking at the diagram from top to down, we first see the chapters related to
the sunspots and then Chapter 5, associated to another dataset. The chapters
which are more focussed on the data are represented in the centre of the figure
whereas the others, linked to the methods, are represented on the right and left
hand-sides. Finally, the increasing degrees of automation are also displayed in the
figure, with a first loosely dotted block for Chapter 2 which is not much auto-
mated. It is followed by a loosely dashed block for Chapter 3, a dashed block for
Chapter 4 and a dotted block for Chapter 5. Finally, Chapter 6 which extends the
automation to the observations themselves is represented in a densely dotted block.

Although there are many links between some chapters, each one can be under-
stood separately except maybe Chapter 5, which is an application of the method
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developed in Chapter 3. Chapter 2 is based on a journal paper, Mathieu et al.
(2019a). It is also associated to a package (uncertainty) with is available for the
WDC-SILSO team at the Royal Observatory of Belgium (ROB). It implements
the computation of all terms of the model described in the chapter in addition to
special requests from the WDC-SILSO team.
Chapter 3 is the object of a second journal paper, Mathieu et al. (2021), which
has been tentatively accepted and is currently under revision. Chapter 3 and
Chapter 4 are both linked to a second package (SunSpot), which is also developed
for the WDC-SILSO. It applies the monitoring methods of both chapters to the
sunspot numbers, as one example (the scripts and notebooks of the package are
thus adapted for the sunspot data). Finally, the method of Chapter 3 is also imple-
mented in a general package (cusvm), freely available on Github. This package is
described in Chapter 5 and used for monitoring the photovoltaic energy production
data (also in the package), which are a bit simpler to study than the sunspots. All
packages are written in the Python programming language.



Chapter 2

Uncertainty quantification in sunspot numbers

One main characteristic of the scientific methodology is its capacity to evaluate
its own errors. Those can be measurement errors, often related to the precision
of instruments. Uncertainties may also come from the (incomplete) modelling of a
phenomenon (“all models are wrong but some are useful” said the famous statisti-
cian Georges Box) or from the estimation of some parameters based on a limited
amount of data. Regardless of the types of errors, it is crucial to estimate them to
know how reliable our data, model or predictions are. In this context, it is essential
to model the uncertainties of the sunspot number data, which act as a benchmark
of solar activity in a large range of physical models. An appropriate statistical
modelling adapted to the time series nature of those numbers is indeed still lacking.

In this chapter, we provide the first comprehensive uncertainty quantification of
sunspot counts. We study three components: the number of sunspots (Ns), the
number of sunspot groups (Ng), and the composite Nc, defined as Nc := Ns+10Ng.
Those are reported by a network of observing stations around the world and are
corrupted by various types of errors. We use a multiplicative framework to provide,
for these three components, an estimation of their error distribution in various
regimes (short-term, long-term and minima of solar activity). We also propose
robust estimators for the underlying solar signal and fit density distributions that
take into account intrinsic characteristics such as over-dispersion, excess of zeros,
and multiple modes.
Although particular to the sunspot numbers, the reasoning behind the model and
the estimators is general and could be applied to other panel data, as will be
demonstrated in Chapter 5. The distributions underlying some terms of the model
are also typical of count data with over-dispersion and surplus of zeros. Those
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are encountered in various fields such as ecology, epidemiology, economy or social
sciences.
More specifically, the estimation of the solar signal underlying the composite (Nc)
may be seen as a robust version of the International Sunspot Number (ISN), the
reference index for solar activity. Our results on Nc may therefore help characterize
at the same time the uncertainty on the ISN.
Our results also paves the way for the future monitoring of the stations that will
be developed in the next chapter, with the aim to alert the observers when they
start deviating from the network and prevent large drifts from occurring.

2.1 Introduction

As explained in Chapter 1, the ISN and its building blocks Ns, Ng and Nc, suf-
fer from errors due to solar- and observer-related variabilities. They also contain
some inconsistencies (Clette and Lefèvre, 2016) that originate from their histori-
cal definition. An appropriate statistical modelling which takes into account the
autocorrelation of the data is however still lacking, even for the most recent part
(1981-now) of the series. Our goal in this chapter is therefore to develop a com-
prehensive uncertainty quantification model for Ns, Ng and Nc, which is adapted
to their statistical nature.

2.1.1 Previous works

The study of the errors of the sunspot numbers began years ago with different
models mostly based on the Poisson distribution. Long-term analyses started with
models of the shape of the sunspot number series (Stewart and Eggleston, 1940;
Stewart and Panofsky, 1938). They pursued the works by M. Waldmeier him-
self (Waldmeier, 1939) who tried to understand the solar cycle and predict upcom-
ing cycles. Later on, Morfill et al. (1991) investigated the short-term dynamical
properties of the series using a Poisson noise distribution superimposed on a mean
cycle variation. Vigouroux and Delache (1994) also uses a Poisson distribution
to approximate the dispersion of daily values of the sunspot numbers at differ-
ent regimes of solar activity. Usoskin et al. (2003) develops later a reconstruction
method for sparse daily values of the data and models the monthly number of
groups corresponding to a certain level of daily values by a Poisson distribution.
The need for error bars on the AAVSO sunspot series1 was already emphasized
in Schaefer (1997) and more recent results in Dudok de Wit et al. (2016) present
a first uncertainty analysis of the short-term error, through time domain errors

1https://www.aavso.org/category/tags/american-relative-sunspot-numbers

https://www.aavso.org/category/tags/american-relative-sunspot-numbers
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and dispersion errors among observing stations, still assuming a Poisson distribu-
tion. In Dudok de Wit et al. (2016) however, the authors uncover the presence
of over-dispersion in the sunspot numbers and approximate the numbers by a mix
of a Poisson and a Gaussian distributions, in an additive framework. Although
non-Poissonian, this additive model fails to capture some of the characteristics of
sunspot data. Chang and Oh (2012) uses on the contrary a multiplicative model to
simulate sunspot counts, in view of assessing the dependency of correction factors
on the solar cycle.

Those studies highlight thus the fact that Ns, Ng and Nc are subject to different
types of errors and do not behave exactly like Poisson random variables: (1) they
experience more dispersion than the Poisson distribution, (2) they are not indepen-
dent from one day to another and (3) they exhibit a large number of zeros due to
periods of minimal solar activity. They also demonstrate the interest of developing
an error model in a multiplicative framework to reproduce the main features of the
data.

2.1.2 Contributions

Our contribution is therefore two-fold. First, we develop robust estimators for the
physical solar signal (denoted ‘true’ signal in the following) underlying Ns, Ng and
Nc. We propose a model for their densities that takes into account characteris-
tics such as over-dispersion and large number of zero counts. Our processing and
estimators are also robust to missing values and do not require to fill-in missing
observations, contrarily to previous studies.
Second, we propose an uncertainty model that is motivated by first studies in Du-
dok de Wit et al. (2016) and that works within a multiplicative framework. Our
model distinguishes three error types. The short-term error accounts for counting
errors and variable seeing conditions from one station to another (e.g. weather or
atmospheric turbulence), whereas the long-term error provides an overall bias in
the number of spots (e.g. gradual ageing of the instrument or observer). Finally, a
third type of error aims at modelling inaccuracies occurring at solar minima and
helps differentiating true from false zeros. As an illustration, the short-term vari-
ations coming from the solar variability and the observational errors are clearly
visible in Figure 1.10. They are superimposed on the approximate seasonality of
the eleven-year solar cycle.
Our study lays the ground for a future monitoring of all active stations within
the WDC-SILSO network in quasi-real time, with the aim to: (1) define a stable
reference of the network, (2) alert the observers when they start deviating from the
network and (3) prevent large drifts from occurring. Furthermore, the procedures
at the basis of the ISN could benefit from the robust estimators and procedures
(including the rescaling of the observing stations, see Section 2.4) developed in
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the following. The robust estimator for the solar signal underlying Nc could for
instance replace the single pilot station in a future definition of the ISN.

This chapter is structured as follows. Section 2.2 introduces the dataset considered.
The uncertainty model is presented in Section 2.3 while Section 2.4 details the
preprocessing of the data. Section 2.5 provides the estimators (or proxies) for the
‘true’ solar signal underlying Ns, Ng and Nc as well as their densities. Finally,
Section 2.6 displays our results on quantification of the different error types, as
well as a first stability analysis that takes into account both short and long-term
variability.

2.2 Data

Similarly to what is done in Dudok de Wit et al. (2016), we study a subset of
21 stations, whose main characteristics are listed in Table 1.1 of Chapter 1. The
period under study goes from 1947 January 1 till 2013 December 31. It ranges from
the maximum of solar cycle (SC) 18 until the ascending phase of SC 242 and covers
thus almost six solar cycles. This dataset contains the daily number of spots Ns,
groups Ng and the composite Nc observed in each of the 21 stations. The methods
developed in this chapter can of course be applied on the whole network of stations
but these results are not presented here.

2.3 Model

In this section, we present step by step the uncertainty model that we developed.
It characterizes the observations of the stations in a multiplicative framework and
involves different types of observing errors as well as a quantity generically denoted
by s(t), for Ns, Ng and Nc. s(t) is a latent variable representing the ‘true’ solar
signal, i.e. the actual number of spots, groups or composite lying on the Sun. It
cannot be directly observed as the counts of the stations are corrupted by different
error sources. Our goal is to estimate the distribution of the ‘true’ solar signal and
of the errors degrading it. In particular, we are interested in the mean and the
variance of these distributions but also in higher order moments since the estimated
densities are far from Gaussian.

The mean of s(t), denoted by µs(t), will be estimated in Section 2.5 based on the
entire network, to be robust against errors of an individual station. It will be used

2https://en.wikipedia.org/wiki/List_of_solar_cycles

https://en.wikipedia.org/wiki/List_of_solar_cycles
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as a proxy for s(t) in the following. Since our model is multiplicative, a good esti-
mation of µs(t) is the key to get access to the multiplicative errors, cf. (2.3.4). A
precise estimation of those errors is also required for a future monitoring and this
depends on the accuracy of the estimation of s(t).

We use a model that is conditional on the latent s(t) and decomposes the observa-
tions along two regimes: when s(t) = 0 (solar minima) and when s(t) > 0 (outside
periods of minima), see Section 2.3.1. This allows introducing, outside of minima,
a model with short-term and long-term errors, cf. Section 2.3.2. A specific error
model is then developed for periods of solar minima in Section 2.3.3, and the com-
plete model is shown in 2.3.4. Finally, Section 2.3.5 introduces the Hurdle model
in order to fit distributions exhibiting an excess of zero values, as it is the case here
due to the presence of solar minima and observing errors.

2.3.1 Conditional model

The observed counts are studied in two distinct situations: when there are sunspots
(s > 0) and when there are none (s = 0). This separation is motivated by the idea
that the absence or the presence of sunspots are lead by a series of phenomena
involving complex dynamo processes in the solar interior, which can be modelled
by a latent variable with two states. Note that these two states could be related
to activation of the toroidal component of the magnetic field on the Sun (which
can be ‘on’ at solar maxima or ‘off’ at minima). This analysis will lead to a
better understanding of the observations and allows differentiating the ‘true’ zeros
of the counting process from the ‘false’ zeros that occur when a station reports zero
sunspot count in presence of one or more spots on the Sun.

Let Yi(t) represent either the number of spots, groups or composite actually ob-
served (raw, unprocessed data). The index 1 ≤ i ≤ N denotes the station, and
1 ≤ t ≤ T is the time. The probability density function (PDF) of Y := Yi(t) may
be decomposed as:

P(Y = 0) =

1
hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj

P (Y = 0|s(t) > 0)P (s(t) > 0)

+ P (Y = 0|s(t) = 0)P (s(t) = 0)
looooooooooooooooooomooooooooooooooooooon

2

P(Y ≥ y) =

3
hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj

P (Y ≥ y|s(t) > 0)P (s(t) > 0)

+ P (Y ≥ y|s(t) = 0)P (s(t) = 0)
looooooooooooooooooomooooooooooooooooooon

4

for y > 0.

(2.3.1)
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Terms ‘1’ and ‘3’ in (2.3.1) represent the short-term error in presence of one or
more sunspots. Term ‘1’ reflects a situation where no sunspots are reported while
there are actually some spots on the Sun (‘false’ zeros or observational errors due
e.g. to a bad seeing). It leads to an excess of zeros in short-term error distribution.

Term ‘2’ captures the ‘true’ zeros (no sunspot and no sunspot reported) while
term ‘4’ reflects a situation where the station reports some sunspots when there
are no sunspot on the Sun. Term ‘4’ is neglected outside of solar minima periods.
Together, these two terms form the distribution of the error at minima, which has
an excess of ‘true’ zeros and a tail modelling the errors of the stations and the
short-duration sunspots.

2.3.2 Short-term and long-term errors

Results in Dudok de Wit et al. (2016) evidence a short-term, rapidly evolving,
dispersion error across the stations that accounts for counting errors and variable
seeing conditions. We define a similar term, allowing a possible station-dependence
and we denote it ε1(i, t). Assuming E(ε1(i, t)) = 0, where E is the expectation sign,
our interest lies in modelling its variance and its tail to study the short-term vari-
ability of the stations.
Next, we introduce ε2(i, t) to handle station-specific long-term errors such as sys-
tematic biases in the sunspot counting process. We want to estimate its mean,
µ2(i, t), and detect if this mean experiences sudden jumps or drifts on longer time-
scales.

Both ε1(i, t) and ε2(i, t) are multiplicative errors, as an observer typically makes
larger errors when s(t) is higher (Chang and Oh, 2012). Assembling these two
types of errors, we propose the following noise model outside of solar minima:

Yi(t) = (ε1(i, t) + ε2(i, t))s(t) when s(t) > 0. (2.3.2)

2.3.3 Errors at solar minima

Let ε3 denote the error occurring during minima of solar activity, when there exist
extended periods with no or few sunspots. We assume the error ε3 to be significant
when there are no sunspots (s(t) = 0) and otherwise negligible in order to not
interfere with the errors ε1 and ε2. ε3 captures effects like short-duration sunspots
and non-simultaneity of observations between the stations. At solar minima, the
model becomes:

Yi(t) = ε3(i, t) when s(t) = 0. (2.3.3)
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2.3.4 General model

Combining the three error types, we may write our uncertainty model in a compact
and generic way as follows:

Yi(t) =

{
(ε1(i, t) + ε2(i, t))s(t) if s(t) > 0
ε3(i, t) if s(t) = 0.

(2.3.4)

We assume the random variables (r.v.) ε1, ε2 and ε3 to be continuous, and the r.v.
s, ε1, ε2 and ε3 to be jointly independent. Although the ‘true’ number of counts s(t)
is discontinuous, its product with a continuous r.v. (ε1 + ε2) remains continuous.
This is consistent with the fact that, after the preprocessing, the observed data
Yi(t) may be modelled by a continuous r.v.

2.3.5 Excess of zeros

All terms in (2.3.4) exhibit an excess of zeros, i.e. an unusual local peak in the
density at zero due to solar minima periods. As the solar minimum is an important
part of a solar cycle, the zeros must be properly treated. Specific models such as
the zero-altered (ZA) or the zero-inflated (ZI) two part distributions may be used
for this purpose (Colin Cameron and K. Trivedi, 2013). The main difference be-
tween both models is that the ZI distribution allows the zeros to be generated by
two different mechanisms contrarily to the ZA model which treats all zeros in the
same way.

As ‘true’ and ‘false’ zeros do not appear together in a single term of (2.3.4), we find
appropriate to work with the ZA two-part model, also called ‘Hurdle’ model. Those
models are commonly encountered in the literature to represent various phenomena
such as abundances of species in bounded areas (F. Zuur et al., 2009). In this case,
zero counts do not only represent situations where the species is not present in a
site even if this site is suited for its habitat. The zeros may also represent design
or sampling inconsistencies (such as the counting of a migrating species where
the species is abroad or the study of a site which is actually improper for the
species) or observer errors (some species are indeed difficult to see or recognize
from others). The zeros are thus in excess with respect to what is expected from
standard distributions of count data. Hurdle models are also appropriate to model
demands for services such as health care (Pohlmeier and Ulrich, 1995) or bookings
in home-sharing platforms (Biswas et al., 2020), which can have a large amount of
zero values. Moreover, they are used to represent death counts associated to the
Covid-19 over different cities or municipalities (Rodriguez-Villamizar et al., 2021).
We denote the density of the data by f(x). In the Hurdle model, the zero values are
modelled by a Bernoulli distribution f0(x) = b1−x(1−b)x of parameter b. Non-zero
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values follow a distribution described generically by f1(x), either another discrete
distribution in case of modelling the counts µs(t) in Section 2.5 or a continuous
distribution for ε1 and ε3 in Section 2.6:

f(x) =

{
f0(0) = b if x = 0

(1− f0(0)) f1(x)
1−f1(0) = (1− b) f1(x)

1−f1(0) if x > 0.
(2.3.5)

The ZA distribution will be used to model the estimated densities of µs(t) in
Section 2.5, and of ε1(i, t) and ε3(i, t) in Section 2.6.

2.4 Preprocessing

Due to the different characteristics of the observing conditions (telescope aperture,
location, personal experience etc.), each station has its own scaling. These dif-
ferences mainly impact the count of small spots, which cannot be observed with
low-resolution telescopes, and the splitting of complex groups, where the personal
experience of the observer matters. A preprocessing is thus needed to rescale all
stations to the same level when comparing stations on the short-term and at solar
minima. It is also required to compute a robust estimator of the solar signal based
on the entire network. For the analysis of long-term errors however, the prepro-
cessing will not be applied, as it would suppress long-term drifts that we want to
detect. Our proposed preprocessing is robust to missing values and proceeds in
two steps.

First, we compute the ‘time-scale’, i.e. the duration of the period where the scaling-
factors are assumed to be constant. It is a trade-off between short and long periods:
the former tends to standardize the observations of the stations, thereby suppress-
ing any differences between the observers. The latter may on the contrary be too
coarse to correct for important changes in observers and instruments. A statistical-
driven study based on the Kruskal-Wallis test (Kruskal and Wallis, 1952) shows
that the appropriate time-scale varies with the stations and with Ns, Ng, and Nc.
We refer to Appendix 2.8.1 for a full description of the test. This time-scale may
also evolve over time. However, to avoid introducing potential biases between the
stations, we use the same time-scale, generically denoted by τ?, for all stations
over the entire period studied. The selected values of τ? are: 8 months for Ns, 14
months for Ng and 10 months for Nc. We note that that these periods are close to
the twelve-months period chosen by J.R. Wolf to compute the historical version of
the scaling-factors.

Second, having determined the time-scale τ?, we compute the scaling-factors using
ordinary least-squares regression (OLS) as follows. Recall that Yi(t) represents
either the number of spots, groups or composite actually observed in a station i,
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1 ≤ i ≤ N at time t, 1 ≤ t ≤ T (daily values). For convenience, we re-arrange the
time by an array of two indices t = (t1, t2), where 1 ≤ t1 ≤ τ? and 1 ≤ t2 ≤ T/τ?.
Thus, t1 corresponds to the index of an observation inside a block of length τ? and
t2 is the index of the block.

Let ~Yi,t2 := [Yi((t1, t2))]1≤t1≤τ? denote the vector of the daily observations in sta-
tion i on block t2 of length τ? and ~Xi,t2 := [ med

1≤i≤N
Yi((t1, t2))]1≤t1≤τ? be the vector

containing the daily values of the median of the network, also of length τ?. The
scaling-factors are computed using the slope of the OLS(~Yi,t2 | ~Xi,t2) regression:

κi(t2) = ( ~XT
i,t2

~Xi,t2)−1 ~XT
i,t2

~Yi,t2 . (2.4.1)

The new definition of the scaling-factors in (2.4.1) is a robust version of a ratio
between the observations of the stations and the median of the network. It is
similar to the definition of the historical k in (1.2.2), where the median of the
network replaces the single pilot-station as the reference level. The rescaled data,
denoted Zi in the sequel, are defined as:

Zi(t) =
Yi(t)

κi(t)
, (2.4.2)

where the reference appears now in the denominator. In a sense, the ratio in (1.2.2)
is inverted in order to limit the problem of dividing by zero whenever the stations
observe no spots. We explored other methods such as orthogonal regression (also
called total least-squares) and OLS( ~Xi,t2 |~Yi,t2) (Feigelson and Babu, 1992). We
choose the OLS(~Yi,t2 | ~Xi,t2) method since it leads to the smallest Euclidean and
Total variation distances between the median of the network and the individual
stations.

2.5 Solar signal estimation

In the following, we first present our estimator for the solar signal, s(t), in a generic
framework. Then, we compare it to data obtained from space, which are less
variable than the observations (albeit biased). The distribution of the solar signal
is then studied separately for Ns, Ng and Nc and fitted by appropriate statistical
models. In the last part of the section, the conditional correlation between Ns and
Ng is also analysed to better understand some features of those distributions.
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2.5.1 Choice of the estimator

To use (2.3.4), we need an estimate of a proxy for s(t). We choose this proxy to
be the mean of s(t), denoted µs(t). We propose as a robust estimator for µs(t) a
transformed version of the median of the network:

µ̂s(t) = T (Mt), (2.5.1)

where Mt = med
1≤i≤N

Zi(t) represents the median of the network, and T denotes a

transformation composed of an Anscombe transform and a Wiener filtering (Dav-
enport and Root, 1968). This filtering is applied in order to clean the data from
very high frequencies which can lead to instabilities in the subsequent analysis.
The generalized Anscombe transform stabilises the variance (Murtagh et al., 1995;
Makitalo and Foi, 2013). It writes as

A(x) =
2

α

c

αx+
3

8
α2 . (2.5.2)

This transformation is commonly applied in the literature to gaussianize near-
Poissonnian variables. It is needed here since the Wiener filtering performs better
on Gaussian data. Similarly to Dudok de Wit et al. (2016), pp. 14-15, we fix
α = 4.2 in (2.5.2). This is the optimal value found for the composite Nc. Before
applying the Wiener filtering, the missing values in the median of the network are
imputed using the algorithm described in Dudok de Wit (2011). Only 49 values
are imputed, which represents 0.2% of the total number of values on the period
studied. The Wiener filtering is then applied on the transformed and complete
set of median values to suppress the highest frequencies of the signal. Finally, the
imputed missing values were reset to their initial NaN (‘not a number’) values in
µ̂s(t). The block diagram of the procedure is described in Figure 2.1.

Note that among other tested estimators (based on the mean, the median of the
network or a subset of stations), the estimator proposed in (2.5.1) turns out to be
the most robust to outliers.

2.5.2 Comparison with space data

To test the quality of our estimator µ̂s, we compare it with a sunspot number
extracted from satellite images of the Sun. We expect less variability when Ns, Ng
and Nc are retrieved from satellite images using automated algorithms as the rules
to count spots and groups are clearly defined. The measurements may be biased
by these rules however and the most complex cases, e.g. at maxima, most often
require either human intervention or a specific procedure in the algorithm. It is
well established fact that a measure of the ‘true’ number of spots and groups does
not exist.
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Mt A(Mt) FFT(Q) Wiener filter

IFFT(φ′)A−1(Q′)µ̂s(t)

Q φ

φ′

Q’

Figure 2.1: Block diagram of the T procedure defining the solar signal estimator µ̂s(t),
where Mt = med

1≤i≤N
Zi(t) is the median of the network. An Anscombe transform is first

applied on the median, and missing values are imputed. Then, a fast Fourier transform
(FFT) is used to convert the signal to a power spectrum in the frequency domain, followed
by an attenuation from a Wiener filter. A step function cancels the amplitude of the
frequencies corresponding to the periods inferior to seven days (low-pass filter). The
threshold at seven days is selected from (Dudok de Wit et al., 2016, Figure 5). It is
the smallest visible time-scale of the signal, corresponding to the weekly shift of some
observatories. Finally, an inverse FFT and an inverse Anscombe transform are applied to
the signal.

As exercise for this comparison, we use the Sunspot Tracking And Recognition
Algorithm (STARA) sunspot catalogue (Watson and Fletcher, 2010), regrouping
observations from May 1996 to October 2010 (solar cycle 23). This number is
extracted using an automated detection algorithm from the images obtained by
the MDI instrument on the Solar and Heliospheric Observatory (SoHO), a spatial
observatory orbiting around the Sun. The extracted number has a lower scaling
than our estimator for the number of spots, µ̂Ns , since the definition of a spot in
the detection algorithm excludes the pores (spots without penumbra).

We compare three quantities on the period where STARA data are available (1996-
2010): Ns (STARA), µ̂Ns , and Ns as recorded by the Observatory of Locarno.
These are shown in Figure 2.2. We test the level of variability by computing the
mean value of a moving standard deviation over a window of 81 days. It is equal
to 14.07 for Ns (STARA) re-scaled on µ̂Ns (5.38 for Ns (STARA) without scaling)
against 15.68 for µ̂Ns and 27.13 for Locarno. As expected, Ns (STARA) experi-
ences less variability than a single station but its variability is comparable to the
one of our estimator.

Since satellite images of the Sun have only been available since 1980, the data
extracted from those images cannot be traced back until the 17th century. pµs(t)
will thus be used as a proxy for s(t) in the following. Note that gathering space
observations during several decades also require the use of different satellites and
instruments, as instruments age in space. These instruments need calibrations that
create additional inaccuracies to the extracted numbers, which are thus also subject
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Figure 2.2: Comparison between the number of spots obtained from STARA and from our
procedures, for the period May 1996 to October 2010. The number of spots obtained from
the STARA catalogue is represented in blue, the actual (unprocessed) number of spots
observed in Locarno (LO) in yellow, and pµNs is plotted in orange. The three quantities
shown are averaged over 81 days.

to variations and errors.

2.5.3 Solar component for Ns and Ng

We present here the statistical modelling of the number of spots Ns and the num-
ber of groups Ng. We do this separately for each component since their physical
origin are driven by different phenomena: the groups convey information about the
dynamo-generated magnetic field in the solar interior whereas the emergence of in-
dividual spots would rather come from fragmented surface flux and agglomeration
of small magnetic fields (Thomas and Weiss, 2008). Together, the analysis of the
spots and groups helps us to better understand the composite Nc and the solar ac-
tivity which is not satisfactorily described by only one of the two numbers (Dudok
de Wit et al., 2016). In the remainder of this chapter, we define a specific notation
for the generic µ̂s(t) from (2.5.1): µ̂Ns(t) for the number of spots, µ̂Ng (t) for the
number of groups and µ̂Nc(t) for the composite.

The authors in Dudok de Wit et al. (2016) showed that the number of spots and
groups experience more over-dispersion than actual Poisson variables. In order to
estimate how far the distribution of the ‘true’ s(t) departs from a Poisson distribu-
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tion, we regress the conditional variance Var(Zi(t)|µ̂s(t) = µ) versus the conditional
mean E(Zi(t)|µ̂s(t) = µ) by OLS, see Figure 2.3. Whereas in a Poisson context
the slope of the fit should be close to one, for Ns > 10, our fit shows a slope of 1.5,
with confidence interval (CI) CI95% = [1.48, 1.51]. This points to over-dispersion
and the need for a generalization of a Poisson PDF. On the contrary, the same
plot for Ng > 0 displays a slope of 0.96, with CI95% = [0.93, 0.99], confirming the
validity of a Poisson process assumption. Note that the values < 11 are excluded
from the fit of Ns, as they seem to indicate a different regime. This change in the
alignment may indicate the presence of a multi-modal distribution, see Figure 2.4.
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Figure 2.3: Estimation of the conditional mean-variance relationship for Ns (left) and Ng
(right). The red line is a linear fit of the points (shown on a log-log scale), starting at
Ns > 9 and Ng > 0, respectively. In both plots, the legend shows the value of the fitted
slope together with its confidence interval at 95%. The value of the intercept is −1.21 for
Ng and −0.57 for Ns. The same fit starting at Ns > 0 (not shown here) leads to a slope
of 1.25 and CI95% = [1.23, 1.28].

Count data with over-dispersion are widely modelled by the negative binomial (NB)
distribution in the literature (Colin Cameron and K. Trivedi, 2013; Rodriguez,
2013) or by its generalization (Jain and Consul, 1970):

g(x, r, p) =
Γ(r + x)

Γ(r)Γ(x+ 1)
prqx, (2.5.3)

where r > 0, p ∈ (0, 1), q = (1− p) and Γ is the gamma function.

A visual inspection of the histogram of estimated values pµNs(t) in Figure 2.4(Left)
reveals a local maxima in the distribution around 20− 40. We refer to these local
maxima as modes in the remainder of the chapter. The underlying density of
µ̂Ns(t) may thus be multi-modal, as suspected from Figure 2.3(Left). Such PDFs
are classically modeled by a mixture model. As the density shows a typical excess
of zeros as well, it requires the use of a ZA distribution defined in (2.3.5). We
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thus fit the complete PDF of the estimated number of spots, µ̂Ns(t), by a ZA
mixture of generalized NB distributions. The density at zero, f0(x), is represented
by a Bernoulli distribution, whereas the density outside zero, f1(x) in (2.3.5), is
identified by a mixture of NB distributions:

f1(x, r1, r2, p1, p2) = w1g1(x, r1, p1) + (1− w1)g2(x, r2, p2), (2.5.4)

where g1, g2 are NB densities and w1 is the mixture weight.

Similarly, the histogram of µ̂Ng (t) exhibits a clear excess in the range 1−3 compared
to a Poisson-like distribution centred between 5 and 8. The PDF of pµNg (t) shows
thus two modes: one around 1 − 3, and one around 5 − 8. Such PDF may be
modelled by a mixture of a NB and a Poisson distributions:

f(x, r1, p1, µ2) = w1g(x, r1, p1) + (1− w1)
µx2
x!
eµ2 , (2.5.5)

where µ2 > 0 and, as above, w1 is the mixture weight.

The fit of these parametric densities are shown in Figure 2.4 by a black line su-
perimposed on the histograms. All fits in this chapter are computed using the
maximum likelihood estimation (MLE). The nature of the different modes in the
PDF of µ̂Ns and µ̂Ngwill be discussed in Section 2.5.5.

Figure 2.4: (Left) Histogram of pµNs(t) values, computed with a bandwidth (binning)
equal to 3, and estimated density for non-zero values of pµNs(t) (shown in black line). The
complete density is modelled by a ZA mixture of generalized NBs. For the zero values,
the MLE value of the Bernoulli parameter is equal to b = 0.1. For non-zero values, the
MLE values of the parameters in (2.5.4) are: r1 = 1.25, p1 = 0.11, r2 = 2.39, p2 = 0.04
and w1 = 0.32. (Right) Histogram of pµNg (t) values, computed with a bandwidth equal
to one, and corresponding density fitted by MLE (shown in black line). The density is
modelled by a mixture of an NB and a Poisson distributions as defined in (2.5.5). The
fitted parameter values are: µ2 = 8.62, r1 = 1.65, p1 = 0.37, and w1 = 0.36.
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2.5.4 Solar component for Nc

We now use (2.5.1) to estimate the µNc , the ‘true’ value of the composite Nc = Ns+
10Ng. By looking again at the conditional mean-variance relationship, we observe
in Figure 2.5(Left) an over-dispersion with a slope of 1.29 and CI95% = [1.27, 1.31]
for Nc > 20. As a compound of both quantities, Nc experiences less over-dispersion
than Ns and more than Ng. A visual inspection of the histogram of µ̂Nc(t) values
in Figure 2.5(Right) indicates an excess of zeros and several modes, most probably
coming from the modes observed in the PDFs of µ̂Ng and µ̂Ns . We find thus
appropriate to approximate the density of µ̂Nc(t) by a ZA mixture of three NB
distributions, where the density outside zero values, f1(x) in (2.3.5), is identified
with:

f1(x, r1, ..., r3, p1, .., p3) =

3∑
i=1

wigi(x, ri, pi), (2.5.6)

where wi are the mixture weights and
∑3
i=1 wi = 1. The fit of f1 is represented in

Figure 2.5(Right) by a black line.
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Figure 2.5: (Left) Conditional mean-variance relationship for Nc, shown on a log-log
scale. (Right) Histogram of µ̂Nc(t) values, with a binning equal to bw = 3. The estimated
density outside of zeros values is shown by a black line. It is modelled as a mixture
of three NB distributions, see (2.5.6), with MLE parameter values equal to: r1 = 3.18,
p1 = 0.48, r2 = 4.02, p2 = 0.15, r3 = 3.05, p3 = 0.02, w1 = 0.08 and w2 = 0.19. The
Bernoulli parameter of the density f0 at zero is equal to b = 0.07.

A statistical analysis (not presented here) shows that the distribution of the ISN
is statistically close to the distribution of µ̂Nc . The uncertainty analysis for µ̂Nc ,
presented in the following, remains thus valid for the ISN.
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2.5.5 Conditional Correlation

Due to the physical nature of the data, the local maxima in the densities of pµNs
and pµNg are not independent. We therefore look at the conditional correlation
Corr(Ns, Ng|pµNc = s) with the goal to better understand the nature of the modes
observed in these two densities, and thus also in the density of µ̂Nc .

Figure 2.5a shows the conditional correlation for different values of µ̂Nc between 0
and 400. Note that even when µ̂Nc = s, the value of the composite Ns + 10Ng for
a particular station may be larger (resp. smaller) than s. Our analysis highlights
three regimes of activity:

Minima µ̂Nc ∈ [0, 11]. Here, the number of spots and groups oscillates between
0 or 1. As the number of spots equals exactly the number of groups, the
correlation is high.

Medium activity µ̂Nc ∈ [12, 60]. The correlation progressively decreases, be-
cause the number of spots increases faster than the number of groups, and
then stabilizes. This regime is characterized by the development of smaller
spots without penumbra or with a small penumbra. Figure 2.5b shows the
bivariate boxplot of Ns and Ng when µ̂Nc = 40. For Ng = 1 or Ng = 2, we
observe values of Ns as high as 40. We clearly observe groups containing a
large number of spots as well as groups, composed of fewer spots, that appear
progressively as the penumbra grows and that indicate a transition toward
groups with fewer but larger spots. The effect of this transition from small
to larger spots is observed in Figure 5 from Clette and Lefèvre (2016).

High activity µ̂Nc > 60. Figure 2.5c shows the bivariate boxplot of Ns and Ng
when µ̂Nc = 70. The plot has a potato-shape around (Ns = 30, Ng = 4). We
now observe all kinds of groups. The correlation between groups and spots
slightly increases as the number of groups begins to grow as well.

The medium and high regimes are reflected in the estimated densities of pµNs and
pµNg in Figure 2.4. The first mode of µ̂Ng ranging from 1-3 corresponds to the
medium regime while the second from 5-8 reflects the high regime. The two distinct
regimes provide another justification for the use of a multi-modal distribution to
characterize the PDF of µ̂Ng . Similarly, there is also a mode in the distribution
of pµNs around 20-40 that comes from the transition between the medium and high
regime. The mode is correctly represented by a mixture model. The study of the
conditional correlation constitutes the first step towards retrieving the distribution
of Nc from its composites Ns and Ng. However, this task is challenging and goes
beyond the scope of the work because: (1) the distributions of Ns and Ng are
complex mixtures and (2) the number of spots is non-trivially correlated to the
number of groups.
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Figure 2.6: (a) Conditional correlation of Ns and Ng: Corr(Ns, Ng|µ̂Nc = s) for s ∈
[0, 400]. (b) Bivariate boxplot (also called ‘bagplot’) of Ns and Ng when µ̂Nc = 40 and
(c) when µ̂Nc = 70. The white cross represents the depth median (Rousseeuw et al.,
2012). The bag contains 50% of the observations and it is represented by a polygon in
red. The fence (not represented) is obtained by inflating the bag by a factor three. The
observations that are outside of the bag but inside of the fence are indicated by a light
grey loop. Outliers are represented by a black star. The correlation is indicated by the
orientation of the bag.

2.6 Distributions of errors

We are now in a position to analyse the error distributions in the sunspot counts,
i.e. to model the distributions of ε3, ε1 and ε2. To this end, we separate minima
from non-minima regimes. We also consider two time-scales: short-term periods,
that is, time-scales smaller than one solar rotation (27 days) and long-term pe-
riods. Section 2.6.1 estimates the error at solar minima, i.e. when s(t) = 0.
Section 2.6.2 analyses the short-term variability of the pre-processed observations
when s(t) > 0. For the study of long-term error in Section 2.6.3, we use raw data
that did not undergo any preprocessing, in order to be able to detect sudden jumps
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and/or large drifts in the series. The correct time-scale for the long-term period is
also determined in this section, based on a statistically-driven procedure. Finally,
Section 2.6.4 compares the characteristics of the different stations based on the
error analysis.

2.6.1 Error at minima

The study of solar minima periods is complex as the data show a large variability
and dichotomy. Observed values of the error at minima, ε3, are defined as counts
made by the stations when the proxy for s(t), defined in (2.5.1), is equal to zero:

ε̂3(i, t) = Zi(t) when µ̂s(t) = 0, (2.6.1)

where Zi(t) corresponds either to Ns, Ng or Nc, and where the generic pµs(t) has
to be replaced by pµNs(t) for Ns, pµNg (t) for Ng, and pµNc(t) for Nc.

A visual inspection of the histogram of Ns (resp. Ng) in Figure 2.7a (resp. Fig-
ure 2.7b) shows an important amount of ‘true’ zeros together with two modes
around one and two. Similar modes occur around 11 and 22 in the distribution of
Nc in Figure 2.7c, as expected. These modes represent short-duration sunspots.
Due to the non-simultaneity of the observations between stations, the proxy for s(t)
might be equal to zero even if some spots appear shortly (from several minutes to
several hours) on the Sun. These modes can be represented by a t-Location-Scale
(t-LS) distribution, which is a generalization of the Student t-distribution. This
distribution has three parameters to accommodate for asymmetry and heavy tails:
the location µ, scale σ > 0, and shape ν > 0 (Taylor and Verbyla, 2004; Evans
et al., 2000). Its PDF is defined as:

g(x, µ, σ, ν)t−LS =
Γ(ν+1

2 )

σ
?
νπΓ(ν2 )

˜

ν + (x−µ)2

σ2

ν

¸−( ν+1
2 )

. (2.6.2)

The large proportion of zeros values for ε̂3 requires the use of a ZA model as
in (2.3.5). We choose a ZA mixture of t-LS for the complete distribution of ε̂3.
The density outside of zero, f1(x) in (2.3.5), is thus identified by such a mixture
of t-LS distributions:

f1(x, µ1, σ1, ν1, µ2, σ2, ν2) =w1g(x, µ1, σ1, ν1)t−LS

+ (1− w1)g(x, µ2, σ2, ν2)t−LS
(2.6.3)

where, as before, w1 is the mixture weight. The histograms and fitted distributions
for pε3 are shown in Figure 2.7. The visual closeness between the histograms and
the fitted distributions was used as a criterion to select the best PDFs among a
few intuitive candidates, while the parameters of the distributions are estimated
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Figure 2.7: Truncated histograms of ε̂3 for Ns (a), Ng (b) and Nc (c). The continuous line
shows the fits using a ZA-mixture of t-LS distributions, defined in (2.6.3). The values of
the Bernoulli parameter in (2.3.5) are equal to: (a) b=0.9, (b) b = 0.86, and (c) b= 0.96
They represent the proportion of ‘true’ zeros. The parameter values for the t-LS fit are:
(left) for Ns: µ1 = 0.91, σ1 = 0.14, ν1 = 31.16, µ2 = 1.85, σ2 = 0.71, ν2 = 2.09, w1 = 0.6;
(center) for Ng: µ1 = 0.89, σ1 = 0.07, ν1 = 6.89, µ2 = 1.75, σ2 = 0.14, ν2 = 1.33,
w1 = 0.09; (right) for Nc: µ1 = 10.24, σ1 = 1.37, ν1 = 3.89, µ2 = 20.57, σ2 = 2.33,
ν2 = 1.93, w1 = 0.08. The bin-width (bw = 0.0917) is the same for the histograms of
both Ns and Ng. It is related to the sample size and the data-range of Ns by a simple
rule proposed by Scott (Scott, 1979). The bin-width of the histogram of Nc (c) is equal to
bw = 0.4192 and is also computed by Scott’s rule. Note that the right figure is enlarged:
the value at zero is 0.96 and not 0.03.

via MLE.

In the previous figures, where the error at minima is represented for all stations
combined, outliers defined as ε̂3(i, t) > 2 are not visible for Ng and Ns. A separate
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analysis (not presented here) shows that the percentage of outliers in each station
are low (inferior to 0.5% for Ns). Some stations also observed a high maximal
value at minima (e.g. a value of 35 was recorded in QU (Quezon, Philippines) for
Ns). This extreme value for a minima may correspond to a transcription error that
might be verified in the future, before being encoded in the WDC-SILSO database.

2.6.2 Short-term variability

When the proxy for s(t), defined in (2.5.1) is different from zero, the short-term
error rε may be estimated using:

p

rε(i, t) =
Zi(t)

µ̂s(t)
when µ̂s(t) > 0. (2.6.4)

To select the best distribution, we proceed as follows. Different densities are fitted
to the values of prε outside of zero, using MLE.3 Then, the AIC criterion is used to
choose the best PDF, which in this case is a t-LS distribution.

As we observe an excess of zero, we need a ZA t-LS distribution to represent the
complete distribution of prε. Figure 2.8 shows the histogram as well as the fitted
PDF of prε outside of zero. For the latter, the mean is close to 1, indicating that on
average the stations are aligned with µ̂s(t). The histogram exhibits a probability
mass at zero representative of ‘false’ zeros, i.e. of stations that do not observe any
sunspot when there are actually some on the Sun. The histogram also shows a tail
on the right-hand side, caused by outliers. This asymmetry requires a t-LS rather
than a Gaussian distribution to be fitted.

The violin plots of four different stations are shown in Figure 2.9 for the number
of spots Ns, where the differences between the stations are the most visible. The
mean of the Observatory of Locarno (LO), the current reference of the network, is
slightly higher than the three other means (and higher than the means of all other
stations), around 1.19. This results from its particular way of counting: large spots
(with penumbra) count for more than small spots without penumbra.

Another characteristic feature is how the error is distributed around the mean.
A violin plot may be seen as a PDF with the x-axis of the density drawn along
the vertical line of the boxplot. For example, the PDF of the short-term error of
LO is concentrated around the mean but the entire distribution is shifted upward
unlike the PDF of Uccle (UC) which has much lower values. UC is a professional
observatory. Different observers record from one week to another the number of
spots, groups and composite on the Sun. As their experience and methodology
slightly change, the shift of observers probably increases the short-term variability

3We use the function ‘’allfitdist.m’, last modified in 2012, in Matlab R2016b.
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Figure 2.8: Histograms of r̂ε for Ns (a), Ng (b) and Nc (c). The continuous line shows the
fits using a t-LS distribution defined in (2.6.2). The values of the Bernoulli parameter
in (2.3.5) are equal to: (a) b = 0.04 , (b) b = 0.02, (c) b = 0.06. They represent the
proportion of false ‘zeros’, i.e. stations reporting no sunspot where there are some. The
parameter values for the t-LS fit are: (a) for Ns: µ = 1, σ = 0.26, ν = 2.8; (b) for Ng:
µ = 0.99, σ = 0.16, ν = 2.33; (c) for Nc: µ = 1.01, σ = 0.17, ν = 2.12. The bin-widths
bw of the histograms are computed using Scott’s rule. For Ns and Ng they are the same
(bw = 0.0328 ) and for Nc it is equal to bw = 0.0433.

of the station. Usually a team of observers experience more variability than a sin-
gle person, like in FU (Fujimori, Japan). This station has a remarkable short-term
stability.
Similarly, the Observatory of San Miguel (SM) shows the typical shape of a pro-
fessional observatory. On the other hand, the LO station shows an p

rε distribution
almost characteristic of a single observer: that is because until recently LO had
one main observer.
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Figure 2.9: Truncated violin plots of the estimated short-term variability p

rε for Ns in four
stations (FU, LO, SM and UC). A violin plot (Hintze and D., 1998) combines a vertical
box-plot with a smoothed histogram represented symmetrically to the left and right of the
box. The white dot in the centre of the violin locates the mean of the distribution. The
thick grey bar shows the interquartile range and the thin grey bar depicts the interdecile
range. The bin-width (bw = 0.05) is the same for all stations and is computed with Scott’s
rule.

2.6.3 Long-term variability

A generic estimator for the long-term error ε2(i, t) may be defined by:

µ̂2(i, t) =

ˆ

Yi(t)

Mt

˙?

when Mt > 0, (2.6.5)

where the ? denotes the smoothing process by a moving average (MA) filter, Yi(t)
are the raw observations and Mt = med

1≤i≤N
Zi(t) is the median of the network. The

T transform from (2.5.1) is not required here, as we apply a MA filter of length L.

This length L should be larger than what is considered as short-term, that is,
periods inferior to one solar rotation (27 days). Long-term on the other hand is
usually defined as periods above 81 days (Dudok de Wit, 2011), beyond which the
effects of the solar rotation and of the sunspot’s lifetime are negligible. The mid-
term temporal regime corresponds to periods between 27 and 81 days. Depending
on our interest in detecting long-term drifts or higher-frequency deviations such
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as jumps, different window lengths may be chosen in (2.6.5) (yet above 27 days).
Indeed, drifts require long smoothing periods (several months, or even years) to
be observed whereas jumps might be over-smoothed by such long smoothing and
hence need a smaller MA window.
Note that other smoothing processes exist in the literature. We use a MA filter
here since this method is particularly suited for smoothing data which contain
many missing values.

a b

Figure 2.10: (a)-(d): Estimation of µ̂2(i, t) for Ns in four stations (SM, FU, LO and UC).
µ̂2(i, t) is computed with different MA window lengths: 81 days (green dotted line), 1 year
(red dashed line) and 2.5 years (blue plain line). (e)-(h): Estimation of the scaling-factors
for Ns in the same stations. The κi(t2)s, with 1 ≤ t2 ≤ T/τ , are computed using the
OLS(~Yi,t2 | ~X,t2) regression in (2.4.1) on a block of τ = 81 days (green dotted line), 1 year
(red dashed line) and 2.5 years (blue plain line). The solar cycle is represented in black
at the bottom of the figures for Ns.

Figure 2.10(a)-(d) represent the µ̂2(i, t)s associated to Ns in four stations starting
from 1960. Figure 2.10(e)-(h) show the scaling-factors κi(t2)s for the same stations
used at short-term and minima regimes. We do not represent years before 1960
because FU and SM show too few observations in that period. FU and UC appear
relatively stable, unlike stations LO and SM, which display severe drifts. Bias in the
counting process is also larger during solar minima when there are short-duration
sunspots. This effect is clearly visible in LO. Indeed, erroneous encoding of counts
leads to much higher relative errors during minima than during the remaining part
of the solar cycle. Some high-frequency deviations are also visible on the graphs
with the smallest MA length (81 days) in green. This scale is more appropriate to
observe them (although it may already suppressed the most sudden jumps), while
longer scales only highlight the long-term drifts of the stations.
We emphasize here the strong link between the preprocessing and the long-term
analysis. Indeed, the scaling-factors presented in Section 2.4 are a rough estimate
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of the long-term error, inspired by the historical procedure of J.R. Wolf. This rough
estimation is required to rescale the stations to the same level. This rescaling is
used to compute the median Mt of (2.6.5). Contrarily to the piecewise constant
κis computed in Section 2.4, the µ̂2(i, t)s are smooth over time and hence are more
adapted to a future monitoring of the stations.

2.6.4 Comparing stations with respect to their stability

Figure 2.11: Scatter plot showing the interquantile range of the estimated short-term
error r̂ε(i, t) and the interquantile range of the estimated long-term error µ̂2(i, t), station
by station. Stations in red represent the teams of observers, the others are single observers.

In previous sections, we presented separately the estimations of the short-term
error r̂ε(i, t), the long-term error µ̂2(i, t) and the error at minima ε̂3(i, t). All three
types of errors are however needed to assess the quality and stability of a station.
Figure 2.11 displays a visual representation of long-term against short-term error
for each station. It shows the long-term versus short-term empirical interquantile
range on a 2D plot and characterizes thus the stability of the stations outside of
minima. Stations in red are the teams of observers. They usually experience more
short-term variability than an individual. We see that MO (Mochizuki, Japan), FU
and KOm (Koyama, Japan) have low-variability both on short and long-term. They
correspond to long individual observers with stable observation practises. On the
other hand, the LO station shows a poor long-term stability, while its short-term
variability is remarkably low for a professional observatory. As mentioned earlier,
this is due to the fact that there is a main observer. UC shows a large variability in



2.7. Conclusion and future prospects 49

the short-term (due to many observers) but an interesting long-term stability, as
already noticed in Figure 2.9. SM experiences the most severe long-term variability
of the network. It has also a large short-term variability, characteristic of a team of
observers. QU shows a large short-term variability and a low long-term variability
level. Although it seems it is a single observer, it appears there was a move from one
place to another during the observing period, and maybe a change of instrument
that would impact the short-term variability. This surprising behaviour will prompt
the WDC-SILSO team to ask for more metadata.

2.7 Conclusion and future prospects

In this chapter, we propose the first comprehensive uncertainty model in a multi-
plicative framework for the number of spots, groups and composites. Our approach
is robust to missing values and was applied on 66 years of data (1947-2013). We
presented several parametric models for the density of the ‘true’ solar signal un-
derlying Ns, Ng and Nc, as well as for the density of their error distributions at
minima, short-term and long-term. This error quantification allows proposing a
first classification of the subset of 21 stations selected for this analysis based on
their stability. It shows that the observing stations are affected differently by the
various types of errors: some are stable with respect to the network at short-term
but experience large drifts and conversely. The analysis also highlights the hazards
of using a single-pilot station as the unique reference of the network.

The error models presented in Section 2.6 may be used later for a parametric mon-
itoring of all stations of the network, with a particular focus on new stations. Data
from new-born observing stations can be recorded for several months. Their dis-
tributions may then be compared to the density of the short-term error (or the
error at minima if we are in a minima period) of the entire network obtained in
this chapter. If the stations experience similar errors, they may be included in the
network. Otherwise, the stations might need to improve or correct their observing
procedure before entering the WDC-SILSO network.
A non-parametric monitoring that aims at detecting in quasi real-time the long-
term drifts of the stations will also be developed in the next chapter. This procedure
will be designed to detect as soon as possible the various types of deviations that
appear in the stations, to prevent large drift such as those observed in Figure 2.10
from occurring.
Furthermore, the work presented here enhances our comprehension of the ISN (and
its errors), which is widely used in astrophysics and space weather physics. A bet-
ter modelling of the ISN improves thus not only the understanding and the quality
of data but also those of the models which are built upon it.

The estimators and the model developed in this chapter can also be inspirational
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for analysing other datasets with similar features, as we will see later in Chapter 5.
The multiplicative framework, the non-normal distributions, the different time-
scales and the missing values of the data are indeed common features in several
applications.

2.8 Appendix

2.8.1 Time-scales of the preprocessing

This appendix details the statistical procedure which selects the time-scales of the
preprocessing described in Section 2.4. It is composed of three steps.
First, the daily scaling-factors are computing using:

κi((t1, t2)) =
Yi((t1, t2))

med1≤i≤NYi((t1, t2))
(2.8.1)

where, as in Section 2.4, we rewrite the time by an array of two indices 1 ≤ t1 ≤ 30
and 1 ≤ t2 ≤ T/30, corresponding respectively to the day and the month of the
observation.

Second, the non-parametric Kruskal-Wallis test (KW) (Kruskal and Wallis, 1952)
is applied on blocks of 30 factors, since the ‘k-coefficients’ of (1.2.2) are currently
estimated on a monthly basis at the WDC-SILSO.
Let ~κi,t2 = [κi((t1, t2))]1≤t1≤30 denote the vector of the daily factors on one month.
The test assesses whether the ~κi,t2s of consecutive months are statistically different.
The procedure starts by comparing the distribution of the first month of the period
studied, ~κi,1, to the distribution of the second month, ~κi,2. If the test shows that
both distributions are significantly different, the two next distributions ~κi,2 and
~κi,3 are tested. Otherwise, the distribution of the two first months [~κi,1 ~κi,2] is
compared to the distribution of the third month ~κi,3. The algorithm is iterated
until the end of the period, for each station. Note that the KW test performs well
when comparing two or more independent samples of unequal sizes. The correlation
of the data is thus neglected in this procedure. Despite the presence of correlations
between consecutive days, the correlation between consecutive months is low. The
test provides thus a station-specific segmentation, shown in Figure 2.12 for Ns. The
length of the segments indicates the number of consecutive blocks of scaling-factors
that come from the same distribution. We assume that these factors are constant
within each segment.

In the last step, the global time-scales for each index are defined from the segmen-
tations of the individual stations. The length of the most frequent segment is first
selected in each station. Then a global scale is estimated from the median of the
most frequent lengths by station, for Ns, Ng and Nc.
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Figure 2.12: Bar-chart representing the results of the KW test applied to the scaling-
factors for Ns. The x-axis represents the stations indexed from 1 to 21 and the y-axis
shows the total period studied expressed in months (1 unit ≈ 30 days). The y-axis is not
ordered in time, for readability purpose, but it is ordered with respect to the length of
the segments. The colours of the chart correspond to the number of blocks that may be
grouped into a single factor (‘κ = 5’ means that a single scaling-factor may be computed
for a period of 5 months).





Chapter 3

Non-parametric monitoring of time-series panel
data applied to the sunspot numbers

In many applications, a control procedure is required to detect the potential devia-
tions of a process. The most trivial example being the need of constantly supervise
the products quality in manufacturing industries. Many other situations can how-
ever benefit from such a procedure. Patients with predisposition to heart attacks
could be saved by the early detection of any abnormality in their physiological con-
dition. The constant evaluation of air-planes performances is also required to ensure
the safety of the passengers and is thus integrated in the maintenance plans. More
specifically, as previously demonstrated, the sunspot numbers recorded in some
stations have irregular behaviours over time. They experience deviations than can
last several years. Hence, a monitoring procedure that could early detect those
deviations and send alerts to the observers would strongly improve the quality and
stability of the series over the years.

In this chapter, we propose the first systematic and thorough statistical approach
for monitoring the sunspot numbers. The method consists of three steps: smooth-
ing on multiple time-scales, monitoring using block bootstrap calibrated CUSUM
charts and classifying of out-of-control situations by support vector techniques.
The procedure is tailored to cope with the low signal-to-noise ratio, the autocor-
relation and the missing values of the data. Moreover, the problem of absence of
in-control series is tackled by an intelligent exploitation of the information that is
contained in the whole panel.
This approach allows us to detect a wide range of anomalies (such as sudden jumps
or more progressive drifts), unseen in previous analyses. It helps us to identify the
causes of major deviations, which are often observer or equipment related. Their
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detection and identification will contribute to improve future observations. Their
elimination or correction in past data will lead to a more precise reconstruction of
the International Sunspot Number.
Furthermore, since many aspects of the method are general, the monitoring scheme
can also be applied to a much wider range of problems. Examples of other appli-
cations will be developed in Chapter 5.

3.1 Introduction

As stated in Chapter 1 and described in details in Chapter 2, the sunspot numbers
are subject to many kinds of deviations at different time-scales. Those can be re-
lated to the observing conditions (instruments, counting methodologies, observers,
etc.) or to the solar variability (such as e.g. short-duration sunspots). We are
thus facing a panel of observations with time-varying disturbances of various kinds
such as jumps, drifts or oscillations. Preserving the quality of the series therefore
calls for a robust and automated tool for supervising the observations in quasi
real-time. This procedure should monitor the stations and send alerts when they
start deviating, to prevent the build-up of large drifts.

Until recently, such a monitoring could not be developed with the available sta-
tistical methods due to the complexity of the series. Moreover, existing modelling
and error quantification of the data were lacking. Advances in statistical process
control (SPC) for panel data combined with the uncertainty model for the sunspot
numbers that we developed in Chapter 2, allow us now to construct an effective
monitoring method for these data.

3.1.1 Related works

Many different procedures have been developed in the SPC literature to monitor
the mean of univariate processes (Qiu, 2013; Montgomery, 2004). Some of them
such as the classical cumulative sum (CUSUM) chart (Page, 1961) are described
later in Section 3.2. Those methods cannot be directly used here however. Indeed,
if each station is an univariate process, its mean and variance change over time, due
to e.g. the eleven year solar cycle (Hathaway, 2010). Some stations are in addition
deviating in their entire observing period and hence do not have IC periods. All
stable stations should therefore be used together to judge if a particular station is
deviating.
To this end, we propose in the following a method based the dynamic screening
system developed by Qiu and Xiang (2014). To the best of our knowledge, this
method is the only one that can be adapted to the particular characteristics of the
sunspot data: the non-normality, autocorrelation and non-stationarity of the data
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as well as the absence of IC periods in all series. The method is composed of the
two following steps. First, the regular patterns (i.e. the mean and variance) of
the data are estimated on a group of non-deviating or in-control (IC) series from
the panel. The data are then standardised by these patterns. In a second step,
the standardised data are monitored by a CUSUM chart designed by a block boot-
strap method, also reviewed in Section 3.2. This procedure constructs, without any
parametric assumption, a control scheme that is valid for non-normally distributed
and serially correlated data.
With this method, we can estimate the regular patterns of the data locally in time,
since we have at each time point a collection of stable series at our disposal. The
method can therefore detect shifts in the mean level of each series, where the means
change over time. It can thus accommodate the intrinsic quasi-periodic variations
in the sunspot numbers that are related to the solar cycle and are thus intrinsic to
the signal.
This approach is thus partially multivariate since different parameters of the method
such as the regular patterns or the control limits of the CUSUM chart are estimated
on several (IC) series. The CUSUM chart is however applied on each process sepa-
rately afterwards. As we are interested in supervising and analysing the deviations
of each individual series, this approach appears particularly suited for our problem.
Note that although the ISN is obtained by combining the observations of the panel,
the final aim is not to monitor this index directly but to compute it from a subset
of non-deviating series, which will be selected by the proposed method.

In the following, we use and extend the work of Qiu and Xiang (2014), to bridge
the gaps between the method and the specific requirements of our problem. Those
gaps are two-fold.
(1) The method of Qiu and Xiang (2014) —as all other methods that we encoun-
tered in the literature— cannot be used without knowing a priori which stations
are in-control. This information is not available for our data, where all stations
are expected to contain several kinds of deviations in their observing period.
(2) The method operates with a control chart which sends an alert when a deviation
is detected, yet without providing any information about the nature of the shift.
Such information is however crucial for us, since it allows to further investigate
the causes of the shifts. Although several methods have been developed to auto-
matically predict the shift size after an alert (see for instance Cheng et al. (2011)
and the references therein), they are not adapted to data which are simultaneously
non-normally distributed, serially correlated and contaminated by strong noise.

3.1.2 Aims

In the following, we propose a nonparametric monitoring that is tailored to the
complex features of the sunspot numbers: (a) the missing values, (b) the strong



56
Chapter 3. Non-parametric monitoring of time-series panel data applied to the sunspot

numbers

noise, (c) the complex autocorrelation structure and (d) the non-normality. Our
method extensively exploits the information contained in the panel to establish a
robust IC reference from the network. This allows us to monitor the stations with-
out prior information on their stability. We complete the method by a support
vector machine (SVM) procedure that efficiently predicts the size and shape of a
shift once an alert has been raised. Although we could manually build a library
with typical shapes and sizes to be compared to the deviations, we select the au-
tomatic SVM approach instead.
The control scheme is then applied on past observations to study the deviations of
the sunspot numbers. The procedure automatically detects major deviations iden-
tified recently by hand in some stations. It also unravels many other deviations,
unseen in previous analyses. In particular, small and persistent shifts that are
difficult to identify manually are detected by the method. The precise information
about the deviations predicted by the SVM procedures allows us to determine the
causes of some prominent deviations. This sets the ground for a future enhance-
ment of the quality of the series. Moreover, the monitoring procedure provides the
possibility to be used in real-time to preserve the long-term stability of the stations.
It also paves the way to a future redefinition of the International Sunspot Number
based on several stations that are stable over time.

This chapter is structured as follows. A general introduction to the statistical
process control is given in Section 3.2. It includes a detailed description of the
CUSUM chart and its design, either for independent and identically distributed
(i.i.d.) normal data or for more general non-normally distributed and autocorre-
lated processes. While the former is based on a simple algorithm, the latter involves
in addition a block bootstrap procedure. The block bootstrap methods are thus
also reviewed in the section. In Section 3.3, we present the sunspot data and the
precise quantity that will be monitored in this chapter. The methods are then
explained in Section 3.4, including the complete monitoring scheme as well as the
SVM procedures to predict the size and shape of the deviations. In Section 3.5,
we apply the proposed method on the sunspot data at different scales, in order
to detect both high- and low- frequency shifts and discuss the results. In a last
Section 3.6, we give some concluding remarks and perspectives. Appendices also
provide some more details about the monitoring scheme as well as more examples
of monitored stations.

3.2 Control charts

As stated at the beginning of the chapter, many applications are concerned about
ensuring the quality of products or preserving the stability of processes over time.
To that end, different methods of statistical process control (SPC) have been de-
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veloped in the literature. Those can be divided into two phases. In the first stage
called phase I SPC, the characteristics of the in-control (IC) or non-deviating pro-
cess of interest are studied. An IC dataset is collected and used to estimate the IC
distribution of the process. In the second stage called phase II SPC, a monitoring
procedure is then applied to the data. When a significant deviation is detected,
the process is considered to be out-of-control (OC) and an alert is triggered. In
manufacturing, the production is most of the time stopped until the cause of the
deviation has been found and corrected. In other applications where the process
cannot be stopped (the physiological condition of patients for example), other mea-
sures can be taken to prevent further complications. The root-causes of the shift
may also be studied to limit the occurrence of future deviations.

In the following, we first explain the concept of average run length (ARL), which
will be used to design and assess the performances of the monitoring methods.
Then, the Shewhart and CUSUM control charts, both widely-used SPC methods,
are described for independent and identically distributed (i.i.d.) normal data. The
block bootstrap is finally introduced, to allow the calibration of the charts for
non-normally distributed and autocorrelated data.

3.2.1 Average run length

The number of observations collected from an initial arbitrary time point to the
alert of the chart is defined as the run length. The performances of the control
charts are usually measured using the concept of average run length (ARL). The
in-control (IC) ARL, denoted by ARL0, is the mean value of the run length when
the process is IC. It represents the rate of false positives of the chart and is similar
to the concept of type I error in hypothesis testing context. Large values of ARL0

are desirable since they reduce the number of false alerts.
The out-of-control (OC) ARL, denoted ARL1, is the mean of the run length when
the process is OC. It corresponds thus to the mean value of the number of samples
collected from the appearance of a shift to the alert of a chart. It embodies the de-
tection power of the chart, such as the type II error in hypothesis testing. Smaller
values of ARL1 are thus pursued since they correspond to a greater detection power.

In practice, as with hypothesis testing, it is hardly possible to design a chart with
ARL0 as large as possible while maintaining at the same time a small value of
ARL1. This may be understood by the following argument.
If the process is IC with a probability α of triggering a false alert at each obser-
vation, the IC run length has a geometric distribution, Geom(α). Its mean and
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standard deviation are then equal to:

ARL0 =
1

α
, σ0

RL =

?
1− α
α

. (3.2.1)

Small values of α lead thus to high values of ARL0.
If the process is, on the other hand, OC with a probability 1 − β of triggering
a (true) alert at each observation, the OC run length follows then a geometric
distribution, Geom(1− β), with:

ARL1 =
1

1− β
, σ1

RL =

?
β

1− β
. (3.2.2)

A chart which is designed to trigger very few false alerts is particularly cautious.
It takes more time to identify a deviation that the same chart calibrated to give a
higher rate of false alerts. Hence, small values of α are also related to high values
of β, i.e. the probability of not giving an alert when the process is OC. Those lead
in turn to large values of ARL1 by (3.2.2).
In practice, the parameters of the chart are therefore calibrated to reach the max-
imal detection power for a fixed rate of false positives.
Note that for small values of α,

?
1− α ≈ 1 and thus ARL0 ≈ σ0

RL. Hence,
multiple runs are needed to correctly approximate the true ARL0 values.

3.2.2 Shewhart chart

Different methods can be used to monitor a process. Among those, the most famous
and widely-used are the control charts. A control chart is at its basis a powerful
graphical tool for statistical process control (SPC). Each point of the chart cor-
responds to the value of a statistic, which is computed on samples collected from
the process. The x-axis of the chart corresponds thus to the sample number and
its y-axis is the value of the statistic. When this statistic exceeds certain values,
called the control limits of the chart (which can have upper and lower values), the
process is assumed to be out-of-control. The charting statistic must thus contain
as much information about the (IC) data as possible, to rapidly detect any shift
in the distribution of the process. We focus in the following on detecting a shift
of size δ in the mean of a process. To this end, several control charts based on
different statistics have been proposed in the literature. The first and the simple
one is the Shewhart (Shewhart, 1931) chart, described in the following.

Let us assume that we want to monitor an univariate i.i.d. normal process. When
the process is in-control, its mean and variance are equal to µ0 and σ2 (known).
The distribution of the process follows thus a N (µ0, σ

2). When the process is out-
of-control, its mean shifts to µ1 = µ0 + δ. The process follows then a N (µ1, σ

2).
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To detect this mean shift, the Shewhart chart applies an hypothesis test at each
time point t:

H0 : µt = µ0 vs H1 : µt = µ1, (3.2.3)

where µt is the true process mean at time t.
To perform this test, a sample of size m is collected at each time {Xt1, ..., Xtm}.
It allows us to compute the observed mean of the process at every time-point:

Xt =
1

m

m∑
i=1

Xti.

As known from elementary statistics, an appropriate statistic for the test in (3.2.3)
is:

Zt =
Xt − µ0

σ/
?
m
∼
H0

N (0, 1). (3.2.4)

If the test is performed at a level α, the null hypothesis is rejected if the observed
value of Zt, denoted Z?t , satisfies |Z?t |> z1−α/2, where z1−α/2 represents the (1 −
α/2)-th quantile of the standard normal distribution.
Hence, we conclude that the process is OC if:

Xt > µ0 + z1−α/2
σ

?
m

or Xt < µ0 − z1−α/2
σ

?
m
, (3.2.5)

where µ0 ± z1−α/2
σ?
m

are the control limits of the chart.

Most of the time, µ0 and σ are unknown. In practice, they may then be estimated
on the data with the following formula:

µ̂0 =
1

n

n∑
t=1

Xt =
1

nm

n∑
t=1

m∑
i=1

Xti

σ̂ =
1

n

n∑
t=1

st, where st =

g

f

f

e

1

m− 1

m∑
i=1

(Xti −Xt)2.

(3.2.6)

Note that the estimator σ̂ is biased but corrections are proposed in (Kenney and
Keeping, 1951, pp 65-68).

3.2.3 CUSUM chart

As can be seen in (3.2.5), the decision rules of the Shewhart chart depend only on
the sample collected at time t but not on past samples. This chart is thus similar to
a procedure which applies a hypothesis test at each time, regardless of the history
of the process. When a shift occurs however, all data recorded thereafter contain
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useful information about the deviation. The Shewhart chart, which does not use
these information, is then ineffective to detect small and persistent shifts in the
monitored process. To correct this effect, the cumulative sum (CUSUM) (Page,
1961) control chart was proposed few years later. This chart is described in the
following in two different forms which are equivalent: the decision interval and the
V-mask.
Contrarily to the Shewhart, the CUSUM chart takes into account the data history
to make a decision about the status of the process. It is thus more effective to
detect small and persisting deviations. Hence, in practice, the Shewhart chart is
often used in the Phase I SPC to roughly identify a subset of IC data. When the
IC parameters are estimated, the CUSUM chart is then preferably applied to the
data in phase II SPC for the actual monitoring. Note that the Shewhart chart
should be applied on batches of data. Although the CUSUM chart can also be
applied on batches, it will be presented for individual data, which allows a more
rapid identification of a deviation (i.e. fewer observations are needed to detect a
shift).

As before, we aim at monitoring the mean of an univariate i.i.d. normal process.
This mean is assumed to be equal to µ0 when the process is IC. It shifts to µ1

when the process becomes OC, with a shift size equal to δ = µ1−µ0. To take into
account the history of the process, a simple charting statistic may be defined as:

Cn =

n∑
i=1

(Xi − µ0). (3.2.7)

This expression is equivalent to

Cn = Cn−1 + (Xn − µ0), (3.2.8)

where C0 = 0. Cn is thus the cumulative sum of the deviation of the dataX1, ..., Xn

from µ0. It is also the sum of n i.i.d. random variables. If the process if IC, Cn
follows thus a normal distribution:

Cn ∼ N (0, nσ2). (3.2.9)

Assuming that a shift δ occurs at time τ , 1 ≤ τ ≤ n, the distribution of Cn, for
n ≥ τ , changes to:

Cn ∼ N ((n− τ + 1)δ, nσ2). (3.2.10)

It follows from (3.2.9) and (3.2.10) that the mean of Cn is zero when the process is
IC and that it starts to linearly change with a slope δ when a shift occurs. Cn would
thus be a good charting statistic candidate if its variance was not also changing
with n. This effect indeed complicates the identification of a linear trend in the
mean of Cn.
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Decision interval form

To solve the variance problem, Page (Page, 1961) introduced another statistic to
detect upward shifts:

P+
n = P+

n−1 + (Xn − µ0)− k, (3.2.11)

where P+
0 = 0 and k > 0 is the allowance parameter. This chart then triggers an

alert if
P+
n − min

0≤m<n
P+
m > L+, (3.2.12)

where L+ is another parameter, called the control limit of the chart.

The scheme defined in (3.2.11) and (3.2.12) is equivalent to the CUSUM chart
based on the following statistic:

C+
n = max(0, C+

n−1 + (Xn − µ0)− k), (3.2.13)

for C+
0 = 0. This chart identifies an upward deviation and gives an alert when

C+
n > L+. (3.2.14)

(3.2.13)-(3.2.14) corresponds to the modern decision interval form of the CUSUM
chart to detect an upward shift. In this expression, the allowance constant (k) and
the control limit (L+) were introduced to take into account the increasing variance
of Cn. This chart has also an explicit restarting mechanism (reset to zero), which
controls its memory. The restarting occurs when C+

n−1 + (Xn − µ0) < k, i.e. in
cases where an upward chart is indeed very unlikely.
In practice, the data can also experience a downward shift of size −δ. This negative
shift can be detected by a downward CUSUM chart based on the following statistic:

C−n = min(0, C+
n−1 + (Xn − µ0) + k), (3.2.15)

where C−0 = 0. This chart triggers an alert if:

C−n < L−. (3.2.16)

Both charts defined in (3.2.13)-(3.2.14) and in (3.2.15)-(3.2.16) are one-sided. To
detect simultaneously upward and downward deviations, a two-sided version of the
CUSUM chart can be defined by combining these two one-sided charts. The two-
sided CUSUM chart detects then a (positive or negative) deviation if (3.2.14) or
(3.2.16) holds. As the distribution of the data is symmetric (they are by assumption
normally distributed), we have L+ = −L− = L.
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a: Half-line from τ = 11 b: V-mask

Figure 3.1: Values of the statistic Cn obtained from a simulated process with µ0 = 0,
σ2 = 1 and µ1 = 0.2. A shift of size δ = 0.2 has occurred at time τ = 11 in the data.
(a) For n > τ , the values of Cn are all above the half-line starting at (τ, Cτ − L) with a
slope k, for k = δ/2 and L = 3/

?
5. (b) The V-mask form of the CUSUM chart is here

applied to the same process. With this method, a deviation is detected if some values
of Cn fall outside of the V-mask represented in the shaded area, as it is the case here at
time t = 15. These figures have bee taken from (Qiu, 2013, Section 4.2).

V-mask form

The decision-interval form of the CUSUM chart is presented in (3.2.13)-(3.2.14)
and (3.2.15)-(3.2.16). We present here another form of the chart which is equiva-
lent to the decision-interval: the V-mask form. This second form is more graphical
and often gives a better understanding of the different parameters of the chart (k
and L).
Let assume one again that a upward shift of size δ occurs at time τ , 1 ≤ τ ≤ n, in
the mean of the normal process defined earlier. As stated in (3.2.9), the statistic
Cn follows a normal distribution of mean equal to zero and variance equal to nσ2

before τ . The mean of the process changes then linearly from τ with a slope δ.
Since the variance of Cn also changes with n, the detection of a linear trend in the
mean is complicated. The V-mask form of the CUSUM chart was then designed
to overcome this difficulty. It is explained below.

If an upward shift occurs at time τ , we expect that, for n > τ , all values of Cn
would be superior to the half-line starting at (τ, Cτ −L) with a slope k (for L > 0
and 0 < k < δ). The parameters L and k have been introduced, instead of simply
constructing a slope δ, to take into account the increasing variance of Cn. This is
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illustrated in Figure 3.1a for a simulated process which experiences a shift of size
δ = 0.2 at time τ = 11.
In practice, the time of the shift τ is unknown. Hence, we rather construct a half-
line starting at (n,Cn −L) and progressing backward with a slope equal to k. If a
shift has occurred in the past, some values of Cn should then fall below the line.
Similarly, another half-line starting at (n,Cn + L) and progressing backward with
a slope −k can be constructed to detect downward shift of size −δ. Both half-lines
can thus be constructed at time n to detect if a negative or positive mean shift
has occurred in past data. If it is the case, some values of Cn would then fall
outside of the half-lines, as shown in Figure 3.1b. As can be seen, those lines form
a horizontal V-mask, hence the name V-mask form of the CUSUM chart.
The time and the size of the shift are usually unknown. They can be estimated
with the V-mask. If several points fall outside of the mask, τ̂ is chosen as the point
which is the farther away from the mask, i.e. τ̂ = 11 in Figure 3.1b. An estimation
of the size of the shift can also be obtained with the following formula:

δ̂ =
Cn − Cτ̂
n− τ

, (3.2.17)

since the mean of Cn increases linearly with a slope δ from the occurrence of a
shift.
As can be seen in the figures, the distance between the last value of Cn and the
half-lines is equal to L. The aperture of the V-mask is thus equal to 2L, whereas
the opening angle of the mask is determined by the parameter k. Hence, small
values of k and L lead to a quicker detection of the shifts. Note that a decrease in
L and/or k also gives rise to an increase in the rate of false positives of the chart,
i.e. a decrease of ARL0.

Design

As previously seen, the CUSUM chart has two interlinked parameters, k and L,
which affect its performances. Those can be evaluated by the ARL: the IC ARL,
ARL0, controls the rate of false positive of the chart whereas the OC ARL, ARL1,
measures its detection power. In practice, the values of k and L are calibrated to
reach a maximal detection power for a pre-specified value of ARL0, as explained
below.
A target shift size, δtgt, is first selected from scientific knowledge of the process.
It could also be estimated from the OC process distribution, as explained in Ap-
pendix 3.7.1. A typical target shift size should be small enough to not be detected
easily by a visual inspection of the data and at the same time be high enough to
have meaningful impacts on the process. The allowance parameter is then specified
to k = δtgt/2. This relation is optimal for i.i.d. normal data (Moustakides, 1986).
Studies in Deketelaere (2020) show that this relation still is valid for many process
distributions however as long as they do not differ too much from the normal. This
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relation does not hold typically for e.g. asymmetric distributions. A pre-specified
value of ARL0, denoted ARL?0, is also chosen. Typical values are 100 (α = 0.01),
200 (α = 0.005) or 500 (α = 0.002).

Algorithm 1: Pseudo-code for adjusting the value of the control limit L
/* Adjust the control limit of the chart for i.i.i. normal data */
Select values for:
[Llow,Lup], the interval where L is searched on
ARL?0, the desired value of the in-control ARL
ρ, the accuracy to reach ARL0

δtgt, the target shift size
k = δtgt/2

while |ARL0 −ARL?0|> ρ do
L =

Llow+Lup
2

for b in (1, B) do
sample data from the (IC) process distribution (N (µ0, σ

2))
compute the test statistics (C+ and C−) on the simulated data
if the chart gives an alert (C+ > L or C− < −L) then

RL[b] = time of alert
else

RL[b] = large number

ARL0 = mean(RL)

update Lup or Llow
{
Lup = (Llow + Lup)/2, Llow = Llow if ARL?0 > ARL0

Llow = (Llow + Lup)/2, Lup = Lup if ARL?0 < ARL0

L =
Llow+Lup

2

The control limit L is then adjusted by a searching algorithm (Qiu, 2013, Section
4.2.2) until the pre-specified rate of false positives is reached at the desired accu-
racy. This procedure uses a bisection method shown in Algorithm 1, where L is
searched in the interval [Llow, Lup] which is cut in two at each iteration. Inside
each iteration, data are sampled from the IC process distribution (here the normal)
and the run lengths of the method are computed on a large number of runs (B).
The actual ARL0 is then evaluated over the runs. Typically, thousand or more
runs are needed to accurately estimate ARL0. If the actual ARL0 is inferior (resp.
superior) to the pre-specified ARL?0, the control limit of the chart is then increased
(resp. decreased). This algorithm is iterated until the actual ARL0 reaches ARL?0



3.2. Control charts 65

at the desired accuracy.
Note that this algorithm only works if Llow is sufficiently small to give ARL0 <
ARL?0 and if Lup is high enough to give ARL0 > ARL?0.

The control charts previously seen can also be used to monitor the mean of pro-
cesses which follow another (known) distribution than the normal. In this case,
Algorithm 1 can still be used for adjusting the limits of the CUSUM chart. The
only thing that should be changed in the algorithm is the simulation of the data.
They should be sampled from the specific IC process distribution instead of the
normal. The relation k = δ/2 can however be suboptimal if the process distribu-
tion is too different from the normal. In this case, an optimal value for k can be
computed as follows. For different values of k, the control limits of the chart may
be calculated using the Algorithm 1, to reach a common rate of false positives. The
combination (k-L) that yields the better detection power (see Algorithm 2 below)
can then be selected.
Note that Algorithm 1 with appropriate charting statistics can also be used to
calibrate the limits of the Shewhart chart to monitor non-normal data.

Detection power

Algorithm 2: Pseudo-code for evaluating the ARL1 values of the chart
/* Evaluate the detection power of the CUSUM chart */
Select value for:
δtgt, the shift size that we aim to detect

Compute the control limit L using Algorithm 1 for k = δtgt/2
for b in (1, B) do

// sample data from the IC process distribution
data = sampling( IC distribution)
// add a shift of size δtgt on those data
data + δtgt
compute the chart statistics C+ and C− on the simulated data
if the chart gives an alert (C+ > L or C− < −L) then

RL1[b] = time of alert
else

RL1[b] = large number

ARL1 = mean(RL1)
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The detection power of the charts can be evaluated using the concept of ARL1 as
proposed in Algorithm 2. With this method, the average time needed to detect a
shift of size δtgt is approximated with Monte-Carlo simulations.

3.2.4 Block bootstrap

Previously, we see how the control charts can be calibrated for i.i.d. normal data.
In practice however, the distribution of the process is often unknown and the data
can be autocorrelated. In these cases, the control charts can still be applied to
the data but they should be calibrated using a method that takes into account
the actual distribution of the process and its autocorrelation. For this purpose, a
popular solution is the bootstrap and its time-series version: the block bootstrap.

Bootstrap

The bootstrap is a non-parametric procedure that samples data with repetition
from the empirical distribution of the process. In general, it is used to approximate
the properties, such as the bias, variance or confidence intervals, of an estimator
θ̂ of an unknown parameter θ based on a sample of data. Let θ̂* denotes the
bootstrap version of θ̂. The bias of θ̂*, which writes as E(θ̂*)− θ̂, can for instance
be used to approximate the bias of θ̂, E(θ̂)− θ.
More specifically, the bootstrap allows us to generate here “new” data with similar
distribution as those of the observations, to calibrate the control charts. With this
method, the control limit of the charts can be computed using a procedure that is
similar to Algorithm 1. The only step that should be modified in the algorithm is
that the data are no longer sampled from a known distribution but are resampled
with repetition from the IC observations.

Block bootstrap methods

When the data are autocorrelated, the simple bootstrap method cannot be used
to calibrate the charts since it samples data one by one. A popular solution to
reproduce the autocorrelation of the process is the block bootstrap (BB). With
this method, the data are randomly sampled with repetitions from the IC process
distribution by blocks of consecutive observations. As many blocks as needed may
be sampled from the data to reach a specific length. A “new” series of desired
length may then be obtained by concatenating those blocks. This procedure pre-
serves thus the correlation of the data inside the blocks.
Note that an alternative method to the block bootstrap is to fit the data by a
parametric time-series model such as a (S)ARIMA (Brockwell and Davis, 1991)
and then to apply the control chart to the uncorrelated residuals. This approach is



3.2. Control charts 67

however time consuming and does not work well if the autocorrelation of the data
is not well-represented by those models (which is typically the case when the data
have complex autocorrelation structures). Hence, we only present the BB, which
is more flexible, in the following.
Several versions of the block bootstrap have been developed in the literature: the
moving block bootstrap (MBB) (Künsch, 1989; Liu and Singh, 1992), the non-
overlapping block bootstrap (NBB) (Carlstein, 1986), the circular block bootstrap
(CBB) (Politis and Romano, 1992) or the stationary block bootstrap (SBB) (Poli-
tis and Romano, 1994). Those methods mainly differ in the way they construct
the blocks ; the number of blocks and the optimal block length are thus different
in each version.

a: Blocks of MBB

b: Blocks of NBB

c: Periodic extension of the data in CBB

Figure 3.2: (a) The set {B1, ...,BN} of overlapping blocks of the MBB method. (b) The
set {B(2)

1 , ...,B(2)
N } of non-overlapping blocks of the NBB procedure. (c) Periodic extension

of the data defined in CBB. These figures have bee taken from (Lahiri, 2003, Section 2).

The MBB constructs for example overlapping blocks as shown in Figure 3.2a. With
X = {Xi, 1 ≤ i ≤ n} a stationary and autocorrelated process of length n and `
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the block length, Bi = (Xi, ..., Xi+`+1) denotes a block starting at the observa-
tion Xi of length `, for 1 ≤ i ≤ N where N = n − ` + 1. On the contrary, the
NBB method samples non-overlapping blocks, shown in Figure 3.2b. In this case,
B(2)
i = (X(i−1)`+1, ..., Xi`) for i = 1, ..., b, where b ≥ 1 is the largest integer satisfy-

ing `b ≤ n.
The two last BB methods (CBB and SBB) were designed to overcome the bound-
ary effect of the MBB, which gives more weight to the observations in the middle
of the series than to those at the ends. Indeed, the first and last observations
appear in fewer blocks than the other data in MBB. Note that a similar effect is
observed in NBB when n is not a multiple of `. To this end, CBB first defines a
periodic extension of the data, {Yn,1, ..., Yn,2n} illustrated in Figure 3.2c and then
partitions the observations into (non-overlapping or overlapping) blocks. Hence,
each observation appears exactly ` times in the blocks.
The SBB on the other hand samples blocks of random length using the following
procedure. A first observation X*

1 is randomly sampled from the data. Then, a
binary experiment with probability of success p ∈ (0, 1), where E(`) = 1/p is real-
ized. If the result is “success”, then a second observation X*

2 is randomly sampled
from the observations. Otherwise X*

2 is chosen as the next observation X*
2 = X*

1+1.
This method generates then blocks of random length and gives the same weight to
all data. For more information about the different BB methods, we refer to the
complete work of Lahiri (2003).
Those four methods have been compared theoretically in Lahiri (1999), which shows
that BB methods using non-overlapping blocks and random block lengths are more
variable than those based on overlapping blocks and constant lengths. Hence, the
MBB and the CBB (using overlapping blocks) methods are often preferred for
practical applications.

The previously-described BB methods randomly sample blocks of observations and
create new time-series by concatenating them. The autocorrelation of the series is
thus preserved inside the blocks but is destroyed outside of them. Hence, abrupt
changes often appear between the blocks, which may not correspond to the be-
haviour of the original series if it has long correlations (i.e. correlation until high
lags). To solve this problem, the matching block bootstrap (MABB)(Carlstein
et al., 1998) has been designed. It creates a sequence of blocks using a transition
rule, which selects blocks that are a priori more likely to be close to each other.
The blocks are thus constructed using one of the previously-described BB methods
and they are later sampled using a Markov chain that favours blocks whose ends
match the end of the previous block (rank matching).
The MABB method can be summarized as follows. Let Bi = {Xi,1, ..., Xi,l} de-
note a block of length l and Xi,j be the j-th observation in the i-th block. Using
e.g. overlapping blocks, there are thus b = n − l + 1 different blocks. We denote
by Ri the rank of the end of the block Bi, which corresponds to the rank of the
last observation Xi,l among X1,l, ..., Xb,l. A first block B1 may be sampled from
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the collection of blocks. Another block j may then be randomly selected from the
2k+1 blocks ranked between R1−k and R1 +k, where k is a small positive integer.
The next block appended to the series is then the block that followed the block j
in the original series. The process may be iterated until the series reaches a desired
length.
With this method, shorter blocks may be chosen than with the previous BB meth-
ods since the long-term correlations are well-handled by the rank matching. The
MABB method may however be inappropriate for time-series which experience
much noise, since the MABB may create series that are smoother than the original
one. The MABB method should thus reserved for time series with long autocorre-
lations and high signal to noise ratio.

Block length

All BB methods previously seen rely on a important parameter, the block length
(or the expected block length for SBB). The choice of this parameter is similar to
those of the bandwidth in non-parametric density estimation. Apart from giving
the rate at which it grows with the sample size (n) however, they are few practical
results in the literature to help us specify the block length. Moreover, many of
them are proposed in a context where the bootstrap is used to approximate the
properties of an estimator (θ̂) of an unknown parameter (θ). Hence, the formula
that are proposed depend on this estimator and the final aim for which the boot-
strap is used (estimating the bias, variance or confidence intervals of the estimator).
Hall et al. (1995) proposes for example an empirical method for choosing the block
length that works as follows. Let ψ̂ denotes the bias, the variance or the distribu-
tion of θ̂*, the bootstrap version of θ̂. The authors compute ψ̂ for different values
of the block length on subseries of length m < n. Then, they select the optimal
block length in a subseries (ˆ̀m) as those which yields the lowest average of the
squares of the differences |ψ̂i − ψ̂|, where ψ̂ is computed on the complete series of
length n and ψ̂i in a subseries. Finally, they obtain the block length for the full
series, ˆ̀

n, using ˆ̀
n = (n/m)1/k ˆ̀

m, where k = 3 for estimating the bias or variance,
k = 4 for estimating a one-sided distribution and k = 5 for estimating the two-sided
distribution of θ̂*. This method can lead to poor results however, when θ̂ is highly
non-linear. Moreover, those rules or methods do not correspond to our problem,
whose aim is simply to generate data with the same properties as the observations.

Hence, we propose another method for selecting the block length of a chosen BB
method, with the aim to calibrate the limits of the control charts previously de-
scribed. The procedure is described in Algorithm 3 and works as follows. For each
block length over a specified range, the method resamples B series of observations
using the chosen BB method. Then, it computes the mean squared error (MSE) of
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Algorithm 3: Pseudo-algorithm to estimate an optimal value for the block length
/* Compute an appropriate block length */
Select values for:
start, a starting value for the block length
stop, a stopping value for the block length
step, a step value for the block length
lag_max, the maximal lag up to which the autocorrelation is evaluated

for ` in (start, stop, step) do
for station in (1, NIC) do

for b in (1, B) do
// sample data from the IC series ’station’
boot = resample IC data per blocks of length `
// compute the autocorrelation of the resampled series until

lag_max
autocorr_boot[b, lag] = autocorrelation(boot, lag_max)

// compute the MSE of the autocorrelation in a station for each lag
and take the mean over the lags

mse_autocorr_station[station] = mean(MSE(autocorr_boot), lag)
// compute the mean of the autocorrelation over all stations
mse_autocorr[`] = mean(mse_autocorr_station)

block_length = knee(mse_autocorr)

the empirical mean, standard deviation and autocorrelation at different lags of the
resampled series with respect to the original data. Small block lengths appear to
represent the variance and the mean of the data properly, i.e. the MSE of the mean
and the variance increases with the block length. Reversely, large block lengths
better account for the autocorrelation of the data as the MSE of the autocorre-
lation decreases when the block length increases. The appropriate value for the
block length is finally selected as the “knee” (or elbow) (Satopaa et al., 2011) of
the curve, i.e. the first value such that the MSE of the autocorrelation becomes
stable. This value intuitively corresponds to the smallest length which is able to
represent the main part of the autocorrelation of the series.
When the BB method and its optimal block length are selected, the control limits
of the charts may then be adjusted as proposed in Algorithm 1. In the algorithm,
the data should simply be resampled from the IC process distribution by the block
bootstrap instead of being drawn one by one from a known distribution. Hence,
the control charts can be calibrated on data with similar distribution and autocor-
relation structure as the observations.
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3.3 Data

After this overview of SPC methods, we focus in the remaining part of the chapter
on developing an effective monitoring for the sunspot numbers.
The dataset that will be studied in the following is first presented at the beginning of
the section. Then, the uncertainty model of the sunspot data that was developed in
Chapter 2 is introduced again, as a remainder, and is slightly modified. The precise
quantity that will be monitored is then presented alongside with its estimating
procedure.

3.3.1 Dataset

The period under study here embraces the most recent part of the series and extends
from January 1, 1981 (when the sunspot numbers production centre moved from
Zürich to Brussels) till December 31, 2019. It ranges from the descending phase of
solar cycle (SC) 21 to the minimum between SC 24 and 251 and covers thus three
complete solar cycles. The data are composed of the number of spots Ns, groups Ng
and composite Nc recorded by a network of 278 observing stations across the world.
They contain around 85% of missing values in this period (1981-2019). Those are
mainly caused by the non-overlapping observing periods of the stations. Indeed,
some stations started observing only recently while older stations stopped their
activity well before 2019. The stations also contain various percentages of missing
values, ranging from 15% to 75%, over their active observing period, mainly due to
weather conditions. The dataset contains thus around 622000 observations. Note
that we work with data containing less missing values in practice, since the data are
smoothed by a moving average, see Section 3.3.3 below. This procedure imputes
the smallest gaps in the data. Hence, the data smoothed on 27 days contains
around 933000 values whereas those smoothed on a year are composed of 1092000
values.
In the following, we denote by t, t ∈ 1, ..., T , the date-time of the observation and
represent the index of the stations by i, i ∈ 1, ..., N = 278, to keep consistency
with the notations introduced in the previous chapter.

3.3.2 (New) uncertainty model

The observations have been decomposed into a common solar signal corrupted by
three types of errors in (2.3.4). Among them, the short-term error (ε1) is respon-
sible for rapid fluctuations in the observed numbers, which can be removed by an
appropriate filtering. Moreover, the error at minima (ε3) only models errors in a

1https://en.wikipedia.org/wiki/List_of_solar_cycles

https://en.wikipedia.org/wiki/List_of_solar_cycles
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small part of the solar cycle. Our monitoring thus aims at the long-term error ε2,
which has the most significant impact on the long-term stability of the stations.
As can be seen in Figure 2.10, the mean of ε2, µ̂2(i, t), is not aligned with one in all
stations. Some stations such as the Observatory of Locarno have an overall higher
level, more around 1.5 than 1. Those levels reflect differences of instruments or
counting methodologies. They may also be related to the degree of atmospheric
transparency above the stations, which depends on their location. The levels are
thus not directly related to the quality of the observations. Moreover, they are
difficult to change in response of an alert. Those factor will thus not be taken into
account in the monitoring. Otherwise, a station with a more accurate telescope
than those of the other stations of the network could be systematically tagged as
out-of-control (i.e. deviating).

To that end, we add an additional term in the model that we developed in Chap-
ter 2, to explicitly untangle those levels (denoted by h) from the long-term errors.
With Yi(t) representing either the number of spots, groups or composite observed
in station i at time t, the more complete version of the model writes as:

Yi(t) =

{
(ε1(i, t) + ε2(i, t) + h(i, t))s(t) if s(t) > 0
ε3(i, t) if s(t) = 0.

(3.3.1)

This model is thus composed of the following quantities:

• s(t) is a latent variable representing the actual number of spots, groups or
composite of the Sun. This latent variable cannot be directly observed but
its mean will be estimated based on the observations of the network and later
used as a proxy for s(t).

• ε1 is a short-term error, which is prevailing at scales that are lower than 27
days (i.e. one solar rotation). It typically represents counting errors. We
assume that E(ε1(i, t)) = 0 where E denotes the expectation sign.

• ε2 denotes a long-term error, which corresponds to scales between 27 days and
eleven year (one solar cycle). We are interested in estimating and monitoring
its mean, denoted by µ2(i, t), which represents the bias of the stations.

• h is defined at time-scales equal to or longer than eleven years. It corresponds
to the background level of the stations (accounting e.g. for differences of
instruments or counting methodologies of the stations). For identification
purpose, we assume that E(ε2(i, t) + h(i, t)) = 1.

• ε3 is an additive error capturing effects like short-duration sunspots during
solar minima, i.e. periods of minimal activity in the eleven-year solar cycle.
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The errors ε1, ε2 and h vary on different time-scales and are multiplicative quantities
since an observer typically makes larger errors when s(t) is higher (Chang and Oh,
2012). The random variables ε1, ε2, ε3 and h are assumed to be continuous and
ε1, ε2, ε3, h and s(t) to be jointly independent. Note that ε1, ε2 and ε3 would be
equal to zero and h be equal to one for a station that would be — in absence of
any measurement errors —perfectly aligned with the solar signal.

3.3.3 Long-term bias

We are thus interested in estimating and monitoring the mean of the long-term
error without levels. This quantity is assumed to better represent the bias of the
stations. Hence, it will denoted by µ2(i, t), the same notation that was used in
Chapter 2 for designating the mean of the long-term error with levels. In the fol-
lowing, any further mention of the bias, the mean of the long-term error or the
µ2(i, t) will refer to this new definition (i.e. the mean of the long-term error with-
out levels). To this end, we isolate the long-term error from the other components
of the model following the approach described in Section 2.6.3. This step-wise pro-
cedure is described below for the more complete version of the model introduced
in (3.3.1). It also serves as a remainder.

We first divide the observations by scaling factors to roughly compensate for differ-
ent observing conditions: Zi(t) = Yi(t)

κi(t)
. These piece-wise constant scaling factors

κi(t) are computed as the slope of the ordinary least-squares regression between
the observations of the stations and the median of the observations ( med

1≤i≤N
Yi(t))

on periods of 8 months for Ns, 14 months for Ng and 10 months for Nc. These
values were selected by a statistical-driven study based on the Kruskal-Wallis test
(Kruskal and Wallis, 1952), which is completely described in Section 2.8.1.
Afterwards, we compute Mt, a robust proxy for s(t) based on the median of the
rescaled observations:

Mt = med
1≤i≤N

Zi(t). (3.3.2)

Motivated from the model in (3.3.1), the observations Y are then divided by Mt

to remove the main influence of the solar signal. They are also smoothed by a
moving-average (MA) filter, represented by a ? in the following equation. This
smoothing process untangles ε2 and h, from the short-term error ε1:

ε̂2(i, t) + ĥ(i, t) ≡xeh(i, t) =

ˆ

Yi(t)

Mt

˙?

when Mt > 0. (3.3.3)

To analyse the various deviations of the data, different MA-filter window lengths
may be used in (3.3.3). Those need however to be superior than or equal to 27
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Figure 3.3: Different steps to estimate the long-term bias µ̂2(i, t) in the station Uccle (UC).
(a) Histogram of the observations Yi(t) for Nc. (b) Histogram of the ratio Yi(t)/Mt. This
step removes the main part of the solar signal from the data. (c) Histogram of xeh(i, t).
At this stage, the short-term error ε1 is also removed from the observations by applying a
MA filter of length equal to 27 days. (d) Histogram of the long-term bias, after removing
the level h of the station by applying a MA filter of length equal to 11 years.

days to overcome the effects of the short-term regime, as stated in Section 2.6.3.
We focus in the following on two different scales. The low-frequency shifts such as
persisting drifts are first studied at a yearly scale (i.e. with a window length of 365
days). Then, a window of length equal to 27 days will also be used to examine the
high-frequency deviations such as sudden jumps.
Finally, the levels of the stations are separated from the long-term error by applying
once again a MA smoothing process denoted by ??. An estimator for the mean of
the long-term error µ2, which is used as proxy for ε2, is then given by:

µ̂2(i, t) = xeh(i, t)−xeh
??

(i, t), (3.3.4)

where the MA-filter window length should be larger than those of (3.3.3). It is
selected here at eleven years (one solar cycle), a physical value that is larger than
the time-scales of the long-term error ε2 considered here. It also seems appropriate
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Figure 3.4: Different steps to estimate the long-term bias µ̂2(i, t) in the station Uccle
(UC). (a) The observations Yi(t) as a function of time for Nc. (b) The ratio Yi(t)/Mt as
a function of time. This step removes the main part of the solar signal from the data. (c)
xeh(i, t) as a function of time. At this stage, the short-term error ε1 is also removed from
the observations by applying a MA filter of length equal to 27 days. (d) The long-term
bias as a function of time, after removing the level h by applying a MA filter of length
equal to 11 years.

since the location of the stations or their telescope are unlikely to change much
over time. Since we removed the solar signal (s) from the long-term error, we
assume that the ε2s are independent across the stations. The main factors that
impact those errors (e.g. the location of the station, the instrument or the counting
methodology) are indeed intrinsic to each station.

Figures 3.3 and 3.4 represent the different stages of the estimation of the long-
term bias, µ̂2(i, t). Figure 3.3 shows the histograms of all intermediate quantities
and the µ̂2(i, t) whereas Figure 3.4 represents those quantities as function of time.
Those results are shown for the station Uccle (UC) in Belgium, which is a typical
non-deviating (in-control) station. They illustrate the computation process of the
long-term bias. Those µ̂2s smoothed on 27 and 365 days are also represented in
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Figure 3.5: Long-term bias, µ̂2(i, t) for Nc, in the Kanzelhöhe Observatory (Austria)
over its observing period. The µ̂2s are smoothed on 27 days (dotted line) to allow the
detection of high-frequency shifts and smoothed on 365 days (plain line) to emphasize the
low-frequency deviations. Mt is also represented in the lower plot as an estimation of the
actual Nc. This figure clearly shows the eleven-year solar cycle of the data.

Figure 3.5 for another station, the Kanzelhöhe Observatory in Austria.

3.4 Ingredients of the method

In this section, the complete monitoring procedure depicted in Figure 3.6 is ex-
plained. It is intentionally presented in a generic framework to allow the applica-
tion of the method on the number of spots Ns, groups Ng as well as composites
Nc. There are three phases: (I) estimation of the in-control (IC) parameters of the
data, (II) construction and use of the monitoring procedure and (III) identification
of out-of-control patterns.
The Phase I contains two steps. At first a subset of stations is selected from the
panel, which follows closely the median signal, Mt defined in (3.3.2). This pool
of stations is then used as a proxy for IC series in the nomenclature of Qiu and
Xiang (2014). They are used to determine the IC patterns (mean and variance)
of the data and to provide the basis of the block-bootstrap procedure in Phase
II. After standardising all series by the IC patterns, the CUSUM control chart is
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calibrated in phase II by a block bootstrap procedure from the pool of IC series.
The scheme is then applied to the data for the monitoring. In Phase III, support
vector machine (SVM) procedures predict the shifts size and shape on sub-series
detected as out-of-control by the CUSUM, for easier problem diagnostic.

Selection of
IC processes

Ia
Estimation of
IC patterns

Ib

Design of the chart
and monitoring of
standardised data

II
Estimation of

shifts size/shape
by SVMs

III

Figure 3.6: Pipeline of the procedure. It is in particular in the dashed blocks that we
contribute with new ingredients of the method.

3.4.1 Phase I: Estimation of the IC longitudinal patterns

In this phase I, we automatically construct a subset of IC stations from the panel
and estimate the IC patterns of the data.

Phase Ia: Selection of the IC processes

In a first stage, we need a subset (pool) of stations whose observations follow closely
the median signal Mt. In order to find them, we calculate a stability criterion on
each station. This criterion is based on a robust version of the mean squared error
(MSE) of µ̂2:

STB(i) = med
1≤t≤T

[µ̂2(i, t)]2 + iqr
1≤t≤T

µ̂2(i, t), (3.4.1)

where iqr
1≤t≤T

µ̂2(i, t) and med
1≤t≤T

µ̂2(i, t) denote respectively the interquartile range

(IQR) and the median of the µ̂2(i, t) over the time for a given station i.
Note that the long-term biases of the stations, µ̂2s, are thus compared in (3.4.1)
to those of a hypothetical ideal station, which is perfectly aligned with the solar
signal, approximated by Mt of (3.3.2). This ideal station has no long-term error,
hence its µ̂2 = 0. An observing station should therefore be aligned most of time
with Mt and have a small variance to obtain a small STB value.
Using the STB values, we can then cluster the stations in two groups and choose
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the cluster with the lowest STB values to form what we call the pool of IC sta-
tions. For this purpose, we use the k-means clustering (Lloyd, 1957; MacQueen,
1967). As the two clusters can be highly unbalanced (if e.g. a station is strongly
deviating with respect to the network), the clustering in two groups is performed
recursively until the smallest cluster contains at least 25% of the stations. Note
that we cluster the STB criterion (one value per station) instead of the whole
series since the stations have different number of observations, some of them being
only composed of few values. Since we cluster 1D data, other methods based on
the ordering or the distribution of the observations could be used. We prefer to
use an automatic and general-purpose procedure instead. The k-means, described
later in Appendix 6.9.1, also appears to classify well the stations whose stability
was previously studied in Chapter 2.

This pool still contains deviations though. Those will be called disparities in the
following, to be distinguished from the deviations that are supposed to be actually
detected by the method. The disparities are expected to be typically smaller and
less frequent than the deviations occurring in the stations not comprised in the
pool. They should be included in the design of the chart otherwise the scheme
would be over-sensitive.
The pool suffers in addition from deviations that are of similar magnitude as those
of the out-of-control (OC) processes. To cope with this and preserve the detection
power of our scheme, we also apply a Shewhart chart (see Subsection 3.2.2 for
more details) with adaptive confidence intervals on the data. We remove the IC
observations that do not fall into one standard deviation around the cross-sectional
mean ( 1

N

∑N
i=1 µ̂2(i, t)). This step removes around 8.8% of the IC observations.

Note that we also test the method with two standard deviations instead of one and
the results were similar (in this case, we only remove around 0.9% of the IC data).
We emphasize that this adaptive Shewhart chart would not be a substitute for our
control scheme: it only removes the largest deviations at each time without taking
into account the history of the observations. Therefore, contrarily to our method,
it cannot detect the small and persistent shifts.

Phase Ib: Estimation of the mean and the variance of the IC series

In Phase Ib, we compute the mean and variance of the µ̂2 of the pool, which are
denoted respectively by µ0(t) and σ2

0(t). Those quantities can be estimated by the
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empirical mean and variance using nearest neighbours (K-NN) regression method:

µ̂0(t) =
1

∆(t)

t+∆(t)/2∑
t′=t−∆(t)/2

1

NIC

NIC∑
iic=1

µ̂2(iic, t
′) s.t. K = ∆(t)NIC

σ̂2
0(t) =

1

∆(t)

t+∆(t)/2∑
t′=t−∆(t)/2

1

NIC

NIC∑
iic=1

pµ̂2(iic, t
′)− µ̂0(t)q

2
s.t. K = ∆(t)NIC ,

(3.4.2)

where iic denotes the index of a station of the pool and NIC is the number of
stations in the pool. With this method, µ̂0(t) and σ̂2

0(t) are estimated in moving
windows across the pool but also along time. The temporal window ∆(t) can thus
be adjusted to compensate the missing values of the stations, such that µ̂0(t) and
σ̂2

0(t) are always computed on the same number (K) of observations.
In practice, the number of stations in the pool, NIC , is fixed by the k-means
procedure previously described. The number of nearest neighbours K is then the
only parameter that should be selected. Since the data must be standardised by
the IC mean and variance (see (3.4.3) below) for appropriate use in the CUSUM
chart statistics, K is chosen to obtain the “best” standardisation of the complete
panel, in the sense that its empirical mean becomes close to zero and its empirical
variance close to one. ∆(t) will thus be automatically adjusted in time direction,
since ∆(t) = K/NIC .

3.4.2 Phase II: Monitoring

We now turn our attention to monitoring the entire panel. As a reminder, we
are analysing long-term biases denoted by µ̂2. Using the IC mean and standard
deviation µ̂0(t) and σ̂0(t), we standardise the (IC and OC) stations to be able to
use common monitoring criteria:

ε̂µ̂2
(i, t) =

µ̂2(i, t)− µ̂0(t)

σ̂0(t)
. (3.4.3)

Let us now focus on one station (drop the index i). We would like to detect
indications of patterns which may relate to problems at the station. This includes
persistent or gradual deviations (shifts or trends) and oscillating patterns as they
may occur when the station is used by a rotating pool of observers each of whom
has their own particular way of working. As explained in Section 3.2.3, a powerful
method for detecting small and gradual deviations in SPC context is the CUSUM
chart. The two-sided CUSUM chart applied on the residuals writes as:

C+
j = max(0, C+

j−1 + ε̂µ̂2
(t)− k)

C−j = min(0, C−j−1 + ε̂µ̂2
(t) + k),

(3.4.4)
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where j ≥ 1, C+
0 = C−0 = 0 and k > 0 is the allowance parameter.

This chart gives an alert if C+
j > L+ or C−j < L−, where L− and L+ are the control

limits of the chart. Since the distribution of the residuals is almost symmetric, we
use L = L+ = −L−.

High deviations may affect the series. Those lead to high values of the CUSUM
statistics which may stay in alert for longer periods than the actual durations of
the shifts. Therefore, in case of too high (resp. too low) values, we set the chart
to a maximal value 2L (resp. −2h). Hence |C+

j |, |C
−
j |≤ 2L.

Design of the chart

For practical use, the control limit and the allowance parameter of the CUSUM
chart should thus be selected. As it is clear from the nature of the data, the series
to be monitored have a considerable degree of autocorrelation, even when they
are in control. We therefore need a method for determining the control limit of
the chart that takes autocorrelation into account. As explained in Section 3.2.4,
the chart can be calibrated using the block bootstrap (BB) method. This pro-
cedure constructs a bootstrap reference distribution by resampling blocks of data
and thereby preserves the autocorrelation of the series.
As stated in Section 3.2.4, BB methods using non-overlapping blocks and random
block lengths are more variable than those based on overlapping blocks and con-
stant lengths. Moreover, the matching BB (MABB) is not suited here since the
data have low signal to noise ratio. Hence, we select the moving BB (MBB) to
obtain the best performances. Note that using the circular BB (CBB) method in-
stead of the MBB does not change the results since there are enough observations
available (i.e. the impact of having the first and last observations appearing in less
blocks than the remaining part of the data is negligible).

The control limit of the chart (L) is then adjusted using the MBB method as
described in Algorithm 1. In each run, a new series of the data is sampled with
repetition from the IC pool by blocks of observations. This series is thus composed
of random blocks of data that come from different stations, to mimic the behaviour
of a new IC series. The run lengths of the chart are then computed on many of
those runs. The value of L is finally adjusted, by bisection searching, until a pre-
specified rate of false positives is reached at the desired accuracy.
The other parameter of the chart that should be selected is the allowance param-
eter, which depends on the target shift size denoted by δtgt. Since we do not have
prior information about the size of the deviations, we estimate it directly on the
OC series as explained in Appendix 3.7.1. The allowance parameter is then fixed
at k = δtgt/2, as explained in Section 3.2.4.
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The data also contain missing values. Among them, the large gaps prevail since
the smoothing process in (3.3.3) removes the shortest gaps of the series. As the
observing conditions could be different after a large amount of missing values (dif-
ferent weather conditions or instruments), we restart the scheme after each gap
(C+

j = C−j = 0). Blocks composed only of missing values are not used to design
the chart. This may happen when some stations contain very few observations on
the period studied here, either because they are ancient and stopped observing at
the beginning of the period or because they have started observing only recently.

3.4.3 Phase III: Estimation of shift sizes and shapes using
SVMs

The CUSUM gives an alert when a deviation is detected in the data but does not
provide information about the characteristics (shape and size) of the shift. Such
information is however valuable to assign possible causes to the shift or to adapt
the type of alerts that is sent back to the observers. To that end, Cheng et al.
(2011) appended a support vector regression (SVR) to the CUSUM. This method
is designed to predict, after each alert, the magnitude of shifts in independent and
identically normally distributed data that only experience jumps. In the following,
we extend Cheng et al. (2011) and design a method that is effective to detect the
sizes and the shapes of the deviations in the sunspot number data. This is achieved
by a SVM classifier (SVC) (Burges, 1998) in addition to a SVR on top of the chart.

Input vector

When an alert is triggered, the m most recent observations of the stations are fed
into the SVR and SVC which then predict the size and shape of the deviation at
the origin of the alert, as explained in the next subsection. In particular, the SVR
prediction model writes as:

δ̂ = f(Vt′) = f(ε̂µ̂2
(t′ −m+ 1), ε̂µ̂2

(t′ −m+ 2), ..., ε̂µ̂2
(t′)), (3.4.5)

where t′ denotes the time of the alert and Vt′ represents the input vector, i.e. a
sequence containing the last m observations of the series.

The length m of the input vector should thus be sufficiently large to contain the
starting point of most of the deviations while maintaining the computing efficiency
of the method. Large shifts are often quickly detected by the chart (short OC run
lengths) while the smallest shifts may be identified only after a certain amount of
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Algorithm 4: Pseudo-code for computing the length of the input vector
/* Find an optimal value for the length of the input vector m */
Select value for:
δtgt, the shift size that we aim to detect
Compute the control limit L using Algorithm 1 for k = δtgt/2

for b in (1, B) do
// sample data with repetitions from the IC processes
data = resample IC data per blocks
// add a artifical shift of size δtgt on the resampled data
data + δtgt
compute the chart statistics C+ and C− on those data
if the chart gives an alert (C+ > L or C− < −L) then

RL1[b] = time of alert
else

RL1[b] = large number

if quantile is specified then
m = quantile(RL1, specified value)

else
qRL1

= quantile(RL1, 0.5-1)
m = knee(qRL1

)

time (long OC run lengths). Therefore, the latter require larger input vectors than
the former. Hence, we propose to select m as an upper quantile of the OC run
length distribution for a shift size equal to δtgt. This is described in Algorithm 4,
which works as follows. For a target shift size δtgt, a large number (B) of IC series
are sampled by the MBB procedure and are shifted by δtgt. The run lengths of the
chart are then computed on these artificial series. The length of the input vector
may finally be selected as an upper quantile of the run length distribution. If it
is unspecified, different quantiles are then evaluated in the range [0.5, 1] and the
optimal quantile is selected as the “knee” (Satopaa et al., 2011) of the curve. With
this method, m should thus be sufficiently large to allow the identification of shift
sizes that are superior or equal to δtgt.

As the SVM procedures do not support missing values, we have to impute them.
Missing observations occurring at the beginning of Vt′ are simply replaced by the
first valid observation encountered, while the “intermediate” gaps are filled by a
linear interpolation. However, when there are too many of them, the analysis
makes no sense. We decide to only analyse input vectors which have at least 20%
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of non-missing values.

Support vector regression

The support vector machine (SVM) (Vapnik, 1998) is a supervised machine-learning
procedure, here used as a robust classifier and regressor to predict the shape and
size of the deviations. The method has a strong theoretical basis that takes root in
the optimization theory. It is able to perform efficiently non-linear classification or
regression using a kernel trick that implicitly maps the data into a high dimension
where the non-linear problem becomes linear. We only introduce the SVR in the
following, since the SVC can be expressed with a similar framework. Smola and
Schölkopf (2004) may also be consulted for more detailed explanations.
We denote by { xj , δj |j = 1, 2, ...,M } the M training pairs. x ∈ Rm represents a
training input, i.e. a series of m observations that contains a deviation and δ ∈ R
is its corresponding output, the size of the deviation. The SVR aims at estimating
the continuous regression function relating the deviating observations to the size
of the shift, f(x), based on the training pairs. This function writes as:

f(x) = wTφ(x) + b, (3.4.6)

where φ is the non-linear function mapping the input data into the high dimensional
feature space, where the regression may be expressed into a simpler linear problem.
The coefficients w and b are then estimated during the training by solving the
following optimization problem:

min
w,b

1

2
||w||2+λ

1

M

M∑
j=1

Lε(δ
j , f(xj)), (3.4.7)

where

Lε(δ
j , f(xj)) =

{
|δj − f(xj)|−ε |δj − f(xj)|≥ ε

0 otherwise.
(3.4.8)

In the objective function of (3.4.7), the parameter λ represents a trade-off be-
tween misclassification and regularization whereas ε in the loss function of (3.4.8)
is equivalent to an approximation accuracy, i.e. errors below ε are neglected. This
optimization problem may be rewritten with Lagrange multipliers as a dual prob-
lem and easily solved in the input space thanks to the introduction of a kernel
function K(xj ,xk) = φ(xj)φ(xk). This kernel function is thus an important
hyper-parameter of the method that should be carefully selected.

λ, ε and the kernel function K(xj ,xk) are thus the hyper-parameters of SVR.
Those should be adjusted to minimize the prediction error evaluated on the val-
idating set – a set of data distinct from the training and testing sets – with a
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performance criterion such as the one described below in Section 3.4.3. Usually,
the hyper-parameters are selected using a grid search over a finite set of values. Al-
though they should in principle be tuned together, we perform the search over one
hyper-parameter at the time and let the others to their default value in the Python
package scikit-learn (Pedregosa et al., 2011). Those correspond to λ = 1,
ε = 0.001 and the radial basis function (RBF) kernel. This approach allows us
to save some computing time. Since the performances obtained with this approach
are sufficient for our monitoring problem, we do not pursue the research further.
Tuning the hyper-parameters together may however increase the performances of
the SVM methods. In the following, we use the RBF kernel in all SVM procedures
and let ε = 0.001, since we do not observe much changes when tuning the value of
ε. λ will however be adjusted by direct search over a set of values at each call of
the SVM methods.

Creation of the training and testing sets

The training and testing sets are constructed by simulations since only a limited
amount of (unlabelled) observations are available. Note that we do not construct a
validating set here. Such a set is useful to select the values of the hyper-parameters
of the method. Since the training and testing sets are constructed by simulations
however, we simply create multiple training and testing sets, one for each value of
the hyper-parameters, and use those sets to fix the hyper-parameters.
As the SVM procedures are supposed to predict the characteristics of the shift after
an alert has been raised by the CUSUM, we generate sets of series that will be first
monitored by the control scheme before reaching the SVMs. When an alert will be
triggered by the CUSUM, the m last values of the series will be assembled and used
as an input vector for the SVMs. Hence, we create series that are initially longer
than m. Those are generated from the IC data by MBB. To ensure the efficiency
and the generalization of the predictions, we then add various artificial deviations
(with different sizes and shapes) on top of these series.

Shift sizes The magnitudes of the shifts, δ, are first randomly sampled from two
half-normal distributions (Evans et al., 2000) supported by [−∞, ...,−δtgt] and
[δtgt, ...,∞] respectively. We select the scale parameter of the half-normals equal
to 3.5, a value that is sufficiently high to reproduce the highest values/deviations
observed in the data.
Shift shapes: For each δ, a series xic of length T ′ is generated from the IC pool
by the BB. Here, we choose T ′ = 500. Three types of general deviations are then
artificially constructed on top of the series:

1. jumps: x(t) = xic(t) + δ ;

2. drifts with varying power-law functions: x(t) = xic(t) + δ
T ′ (t)

a, where a is
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randomly selected in the range [1.5, 2] ;

3. oscillating shifts with different frequencies: x(t) = xic(t)δ sin (ηπt), where η
is randomly selected in the range [ πm ,

3π
m ].

These three types of deviations cover a large variety of existing shifts. Similar devi-
ations are used in Qiu et al. (2017), to evaluate the performance of their proposed
monitoring scheme on simulations. The particular values of the parameters a, T ′
and η are then selected here to visually correspond to the deviations observed in
the data.
Time of the shift : In the data, the shifts may happen not immediately but after an
initial IC period. Therefore, we also start the monitoring after a random delay in
the range [m, 3m/2], to train the methods at identifying shifts appearing anywhere
within the input vector. Note that the SVMs as well as the control chart should
be started after m observations are gathered.

The SVR is trained and tested on these constructed sets to predict the size of
the deviations in the continuous range [−∞, ...,−δtgt, δtgt, ...,∞]. In practice, we
observe that the SVR generalizes well and can make predictions on R even if it was
only trained in a smaller range of interest. The SVC also learns on the same sets
to identify three different shapes: (1) jumps, (2) drifts and (3) oscillating shifts. If
a wide range of deviations are simulated, only three classes are therefore involved
in the classification problem.
Note that we do not normalize the training and testing sets since the SVM methods
appear to perform sufficiently well for our monitoring problem. In general however,
the performances of a SVM method can be improved by normalizing the data.

Performance criteria

The SVM prediction results can then be measured with different criteria. The
SVR predictive ability may be evaluated on the testing set with the mean absolute
percentage error (MAPE):

MAPE =
1

M

M∑
j=1

∣∣∣∣∣ |δj |−|δ̂j ||δj |

∣∣∣∣∣× 100%, (3.4.9)

where δ̂j is the shift size predicted by the SVR (which can be positive or negative)
and δj is the true size. Small values of MAPE are desirable since they correspond
to predictions that are close to the actual shift sizes.
On the other hand, the performances of the SVC may be evaluated by the classi-
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fication accuracy:

ACCURACY =
1

M

M∑
j=1

1{δ̂jc3=δjc3}
× 100%, (3.4.10)

where δ̂jc3 denotes the shape of the deviation (jump, drift, or oscillating shift) pre-
dicted by the SVC, and δjc3 is the true shape. A high accuracy is desired since it
corresponds to a close match between the predicted and the actual shapes of the
shifts.
The accuracy is thus a performance measure of the classifier for all shapes. The
confusion matrix may also be computed to obtain a detailed view of the perfor-
mances of the classifier, class by class. The columns of this matrix represent the
prediction labels (here the predicted shapes) whereas the rows are the true labels
(the true shapes). Therefore, the elements of the matrix on the main diagonal cor-
respond to the numbers of correct classification per class, while the other entries
show the number and the type of classification errors.

This completes our description of the monitoring method whose main parameters
are summarized in Appendix 3.7.2. In this appendix, we propose typical values
of those parameters – which are also detailed in the following – for monitoring
the sunspot numbers. Some simulations are also provided to illustrate the influ-
ence of some parameters, such as the block length or the size of the pool, on the
performances of the method.

3.5 Monitoring the composite sunspot index Nc

In this section, we use our methodology to solve the monitoring problem of the
sunspot numbers. We do so for the composite Nc = Ns+10Ng (the same approach
also works for the two components, Ns and Ng and is presented in the appendix).
We first study the low-frequency deviations on data that have been smoothed on
a year to extract and analyse low-frequency patterns such as trends and persistent
shifts. Then, we examine data that have been smoothed on 27 days (one solar
rotation) to detect higher frequency patterns such as sudden jumps. The section
ends with an example of a monitoring at multiple frequencies applied to a particular
station.

3.5.1 Lower frequency monitoring

In the first step of the low-frequency monitoring of Nc, we smooth the long-term
bias (µ̂2) with a window length of one year as described in Section 3.3.3. As ex-
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plained in Section 3.4.1, the network of stations is first reduced to a pool of 119
in-control (IC) stations. In the next step, we extract the IC mean and standard
deviation using the K-NN regression described in Section 3.4.1. The selection mech-
anism finds K = 4600 for this step. The resulting mean and standard deviation
are then used to standardise all series.
In the second stage, we use the block bootstrap method to calibrate the CUSUM
chart at an average run length of ARL0 = 200, as described in Section 3.4.2.
This requires choosing the block length first. To do this, we use Algorithm 3 with
lag_max = 50 and B = 200 runs. We first search the block length over the range
[10, 100] with a step value equal to 10. We obtain a block length value equal to
50. Then, in a second round, the block length is selected over a smaller range of
values, [40, 60], with step equal to 2. With this procedure, a choice of two solar
rotations (54) appears appropriate. It is longer than the lifetime of most sunspots
but not too long for practical use. The control limit is then adjusted by bisection
searching in the interval [0, 30] using Algorithm 1, with B = 4000 runs and an
accuracy equal to ρ = 2. The calibration then leads to a control limit of L = 18.9
for a target shift size of δtgt = 1.5.

Deviation Predicted
True value jump drift oscillating shift
jump 4192 1 7 4200
drift 34 4166 0 4200
oscillating shift 482 1 3717 4200

4708 4168 3724

Table 3.1: Confusion matrix.

Finally, the support vector method for extracting and classifying out-of-control
patterns is deployed. It is composed of a SVR to predict the size of the shifts
and a SVC to classify the shape of the encountered deviations. We obtain them
by creating a set of artificial series of 500 values generated from the IC pool by
the BB. These give us series as we would observe in reality including correlations.
We then artificially add jumps, trends, and oscillating shifts to them as described
in Section 3.4.3. These series are then fed to the CUSUM chart which identifies
the out-of-control observations. When an alert is triggered by the chart, an input
vector containing the m last observations of the series is assembled. This input
vector is then analysed by the SVR and SVC for predicting the characteristics of
the shift. In our case, we harvested 63000 such series from the IC pool and we
enriched them with artificial patterns. We then calibrated SVR and SVC models
by splitting this set into a training set (80%) and a testing set (20%).

The length of the input vector is specified here at m = 80, using Algorithm 4 with
B = 4000 runs. This value of 80 corresponds to the 90-th quantile of the OC run
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length distribution, for a shift of size δtgt. The regularization parameters (λ) of
the support vector machines are automatically selected from a searching interval
over the range [0, 20] with step value equal to one, to obtain the best prediction
results. Those are evaluated using the mean absolute percentage error (MAPE)
for the regression and the accuracy for the classification problem, as explained in
Section 3.4.3. With this method, λ is set to 13 for the classifier and regressor. The
accuracy error ε of the SVR is also fixed at 0.001, as stated in Section 3.4.3.
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Figure 3.7: (a) Upper panel: the residuals ε̂µ̂2(i,t) for Nc smoothed on one year from the
KZ over the period studied (1981-2019). In addition to their disparities, the residuals
also contain the actual deviations of the station, which have been removed for the design
of the chart as explained in Section 3.4.1. Middle panel: the (two-sided) CUSUM chart
statistics applied on the residuals in square-root scale. The control limits of the chart
are represented by the two horizontal thick lines. Lower panel: the characteristics of the
deviations predicted by the SVR and SVC after each alert. (b) Similar figure for MT over
the same period.

After training, the SVR shows a MAPE of around 26 and the SVC has an accuracy
of around 95% on the testing set. Cheng et al. (2011) present MAPE values for
predicting the sizes of simple jumps in i.i.d. normal data using SVR. Those are
of the same magnitude as ours. Considering the various types of deviations that
are used to train the SVMs, the performances of our method are acceptable. The
confusion matrix is written in Table 3.1 for the 12600 testing pairs. With a per-
fect classifier, the matrix would be diagonal with elements equal to 4200. As can
be seen, the most frequent errors are oscillating shifts predicted as jumps. Those
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account for 482 testing pairs and represent 3.8% (482/12600) of the testing set.
These errors are expected since a series of consecutive jumps with different sizes
may look similar to an oscillating shift. Overall, the performances of the SVMs are
sufficient to achieve our goals: identify the origins of the deviations.
Note that we also examine the support vectors but they were not sparse and we
did not gain further insight about the SVM methods with this analysis.

Figure 3.7 shows results for two stations: the Kanzelhöhe Observatory in Austria
(KZ) and the National Observatory of Japan, in Mitaka (MT). The observatory of
KZ is rather stable and belongs to the IC pool. It relies on a stable team of well
trained observers. The observatory MT is generally less stable and shows a severe
downward trend around 1998. The cause of this downward trend could be traced to
the replacement of visual counts from the direct optical solar image by automatic
computerized counts based on digital images from a CCD camera. Given the image
sensor technology then available, the spatial resolution of the images was limited,
and many small spots that were fully detected in earlier visual observations were
not detected anymore by the new equipment.

3.5.2 Higher frequency monitoring

Deviation Predicted
True value jump drift oscillating shift
jump 4153 11 36 4200
drift 65 4135 0 4200
oscillating shift 435 10 3755 4200

4653 4156 3791

Table 3.2: Confusion matrix.

The method described above can also be applied to the biases (µ̂2) smoothed on a
shorter time window such as the duration of a solar rotation (27 days). Here the
selection of the IC pool yields 100 stations and the number of nearest neighbours
comes out to K = 2400. This number is smaller than before since we are working
at a higher frequency. The block bootstrap and SVMs with the same settings as
above can be used to calibrate the CUSUM chart. For δtgt = 1.4, the control limit
of the chart is selected at L = 13 to obtain an average run length of 200. The
length of the input vector is fixed here at m = 70, which corresponds to the 90-th
quantile of the OC run length distribution.

After training, the SVR shows a MAPE of around 32 and the SVC has an accuracy
of around 95% on the testing set. The confusion matrix is displayed in Table 3.2
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for the 12600 testing pairs. As can be seen in the Table, the most frequent errors,
representing 3.5% (435/12600) of the testing set, are oscillating shifts predicted as
jumps.

10

0

10

2(
i,t

)

Monitoring in KO

10

0

10

CU
SU

M
 st

at
ist

ics C + C

1981 1986 1991 1996 2001 2006 2011 2016
year

10

0

10

De
vi

at
io

ns

jumps trends oscill

a

10

0

10

2(
i,t

)

Monitoring in SM

10

0

10

CU
SU

M
 st

at
ist

ics C + C

1981 1986 1991 1996 2001 2006 2011 2016
year

10

0

10
De

vi
at

io
ns

jumps trends oscill

b

Figure 3.8: (a) Upper panel: the residuals ε̂µ̂2(i,t) for Nc smoothed on 27 days for KO
over the period studied (1981-2019). In addition to their disparities, the residuals also
contain the actual deviations of the station, which have been removed for the design of
the chart as explained in Section 3.4.1. Middle panel: the (two-sided) CUSUM chart
statistics applied on the residuals in square-root scale. The control limits of the chart
are represented by the two horizontal thick lines. Lower panel: the characteristics of the
deviations predicted by the SVR and SVC after each alert. (b) Similar figure for SM over
the same period.

Figure 3.8 shows the methodology applied to the observer Koyama (KO) and to
the observatory of San Miguel in Argentina (SM). KO was a Japanese station run
by a single dedicated observer whose records (which stopped during 1996) were
very stable. On the contrary, SM is a severely OC station that experiences large
known deviations that were already visible in Figure 2.10. The large variations
observed in SM are likely caused by the rotation of several observers involved in
the counting process. In some countries, the public observatories have also an
educational function. Their team of regular observers are usually small and are
often completed by student or amateur astronomers that are frequently replaced,
which causes large variations. Unfortunately, we could not identify more precisely
the origin of the deviations since their observations stopped several years ago and
we have not succeeded in contacting them yet. The lack of information is a common
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problem we face when investigating past deviations in stations that are now inactive
and is therefore worth mentioning.
As we see in the figure, the biases vary a lot at 27 days, a scale which is close to
the short-term regime. The actual monitoring should be based on a larger scale
otherwise some stations such as SM would receive almost constant alerts. If a
particular deviation is detected at higher scale (such as one year), it might be
interesting however to analyse it at 27 days, to better identify its origin.

3.5.3 Monitoring at multiple frequencies
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Figure 3.9: (a) Upper panel: the residuals ε̂µ̂2(i,t) for Nc smoothed on 365 days from FU
over the period studied (1981-2019). In addition to their disparities, the residuals also
contain the actual deviations of the station, which have been removed for the design of
the chart as explained in Section 3.4.1. Middle panel: the (two-sided) CUSUM chart
statistics applied on the residuals in square-root scale. The control limits of the chart
are represented by the two horizontal thick lines. Lower panel: the characteristics of the
deviations predicted by the SVR and SVC after each alert. (b) Similar figure for the
values of ε̂µ̂2(i,t) smoothed on 27 days in FU.

Figures 3.7 and 3.8 display instances of a stable IC station included in the pool and
a typical out-of-control station for the high- and low- frequency monitoring respec-
tively. To better grasp the motivations of a monitoring at multiple frequencies, the
method is applied to the data smoothed on 27 days and one year of the observer
Fujimori (FU) in Figure 3.9. The FU station is composed of a single dedicated
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observer in Japan, who has observed without interruption since 1968 until today,
producing one of the longest individual series. His observations are included in the
IC pool but yet suffer from recent deviations. In particular, the upward deviation
(which looks like a spike) reported in 2007 in FU (Clette, 2013) as well as the down-
ward drift occurring after 2014 are well identified in Figure 3.8a. Figure 3.10 shows
a zoom of Figure 3.8a on the time period from 2007 to 2008. After a progressive
upward shift, the station experiences a rapid downward trend over five days. This
trend, which looks like a jump in the whole period view, it thus correctly classified
by the SVC. Even by taking a closer look on the figure however, it remains difficult
to precisely identify the origin of the shifts on data that are smoothed on a year. By
looking at a smaller scale of 27 days in Figure 3.8b, we can better characterize the
shift in 2007 as a short event and pinpoint its location. After investigations, this
deviation appears to be related to a small over-count that appeared in early 2007
(three groups were reported in FU while most of the network only observed two
groups) while the drift might be associated to the health condition of the observer.
Note that the long-term biases are not defined (i.e. set to missing values) when
the median of the network is equal to zero, see (3.3.3). This regime corresponds
to those of the variability at minima, represented by ε3. Due to the smoothing
procedure of (3.3.3), the deviations that appeared close to solar minima, such as
the jump in FU, are thus particularly visible.

As shown in the figures, the monitoring and the SVM procedures can cope with
a large variety of shifts ranging from small and persistent deviations to large os-
cillating shifts. The procedures automatically detect major deviations recently
discovered by hand as mentioned above. More identified prominent deviations as
well as results for other stations are shown in Appendix 3.7.3. In addition, the
chart also unravels many other shifts, typically smaller, that are otherwise difficult
to identify.
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Figure 3.10: Sizes and shapes of the deviations (taken from Figure 3.9a) predicted by
SVMs in FU over 2007-2008.

Note that the figures represent past observations, which have not been monitored
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by any control scheme. Consequently, the stations may stay in alert for long
consecutive periods. If this method is applied on future observations, any major
deviation will be promptly corrected. Therefore we expect better results for data
that have already been monitored.

3.6 Conclusion and perspectives

In this chapter, we construct a non-parametric control scheme to monitor the
sunspot numbers across the wide network of stations. The approach allows us
to deal with the missing values, autocorrelations and non-normality of the data.
The procedure is based on a particular choice of methods for smoothing, robust
anomaly detection, and anomaly classification. Other methods exist for these steps;
yet we believe that our choices are particularly suitable for the problem at hand.
The features of our approach are multi-scale smoothing, CUSUM charting, SVM
classification and detailed graphical displays. They also include an automatic pre-
selection of an in-control pool and the powerful calibration of the chart using block
bootstrap procedures. The associated advantages are robustness, flexibility, au-
tomation, and guided interpretation of results.

The method identified a wide range of deviations, which were mostly undetected
in previous analyses. As have been seen, monitoring on at least two frequencies is
essential to capture these anomalies. Some patterns first attract interest on a long-
term scale but it is at the short-term scale that their potential root-causes can be
suggested. The method also helps us to identify the causes of major deviations that
occurred in the series. Most of them have not been related to specific causes yet
but will soon be investigated. Moreover, as the classification results are complex,
careful analyses are required to fully interpret them, which opens new research
perspectives. Further investigations are for instance required to see if the drifts
may be associated in a more systematic way to the ageing of the instruments, or if
the oscillations may reflect the periodic alternation of observers in large stations.

This automated method allows us and the researchers of WDW-SILSO team at the
Royal Observatory of Belgium, who are in charge of producing the International
Sunspot Number (ISN), to have a harmonized view across the network of stations.
It also provides a way to give specific and targeted advice to the observers. Differ-
ent types of alerts can for instance be designed by combining the information about
the magnitude, the shape as well as the duration of the shifts. Those can be used
to send immediate alerts back to the observers for the large jumps or the week-long
shifts detected whereas the other deviations, which have typically a smaller impact
on the quality of the series, may simply be included in an annual report containing
the statistics of the shifts over the elapsed year.
The complete re-examination of past data of the whole panel has just started.



94
Chapter 3. Non-parametric monitoring of time-series panel data applied to the sunspot

numbers

When they will be finished, these analyses will allow us to arrive at a cleaner data
stream and to release an improved version of the ISN. Additionally, the imple-
mentation of the method in the continuous surveillance of future observations will
lead to a faster detection and identification of inconsistencies, their elimination by
better observer training or equipment maintenance, and finally to a more precise
determination of the sunspot numbers in the future.

Although presented here for a special application, our methodology is general and
can be adapted to other panels of time-series data such as those observed for in-
stance in the manufacturing or financial industry. This will be shown in Chapter 5,
where this method will be applied to the photovoltaic energy production in Bel-
gium. The computational aspects of the method, which have been mostly ignored
here, will also be discussed in this chapter. A tutorial for the package, which is
associated to the method and written in the programming language Python, is in
particular provided in Chapter 5.

3.7 Appendix

3.7.1 Selection of the target shift size

Without prior information about the deviations, the target shift size, δtgt, may be
estimated on the OC series by a recursive method described in Algorithm 5. This
procedure is explained below. For an initial value of δtgt, denoted by δ0, we first
compute the control limit of the chart with Algorithm 1. The chart is then applied
to B series of data that are resampled from the OC series by the BB procedure.
In this work, we use B = 4000 series if not specified otherwise. For each sample,
the magnitude of the deviation is computed after the alert using the following
formula (Montgomery, 2004, Section 8.5):

δ̂ =

{
k +

C+
i

N+ if C+
i > L

−k − C−i
N− if C−i < −L,

(3.7.1)

where δ̂ is the estimated shift size expressed in standard deviation units and N+

(resp. N−) represents the number of observations where the CUSUM statistic C+
i

(resp. C−i ) has been non-zero. Although valid for i.i.i. normal data, the above
formula can still be used in general to provide a rough approximation of the shifts
size (those will be estimated afterwards by support vector regression). A new value
for δtgt is then computed as a specified quantile of the shifts size distribution and
the algorithm is iterated few times until convergence. In practice, we stop the
computations when the difference between the shift sizes obtained at iteration i
and i− 1 is inferior or equal to 0.1. In general, we recommend to select a quantile
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around 0.4-0.5. Smaller values are not appropriate to the identification of the
largest shifts and vice-versa.

Algorithm 5: Pseudo-code for estimating a target shift size
/* Estimate a target shift size */
Select values for:
δ0, an initial value of the target shift size
ρ, the accuracy of the algorithm’s convergence

δprev = 0 ; δ = δ0
while |δ − δprev|> ρ do

Compute the control limit L using Algorithm 1 for k = δ/2
δprev = δ
for b in (1, B) do

// sample data with repetitions from the OC processes
resample OC data per blocks
compute the chart statistics C+ and C− on the resampled data
if the chart gives a positive alert (C+ > L) then

shift_size[b] = k + C+

N+ (Montgomery’s formula)
if the chart gives a negative alert (C− < −L) then

shift_size[b] = −k − C−

N− (Montgomery’s formula)

δ = quantile(shift_size)

δtgt = δ

3.7.2 Parameters of the monitoring

The main parameters of the monitoring method are presented in Table 3.3. In this
table, two numbers are often proposed as typical values for monitoring the sunspot
numbers. Those correspond to the values that should be selected to monitor re-
spectively the data smoothed on 27 days and on one year.
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The main parameters that influence the performances of the method are associated
to a star (*) or double stars (**) in the table. Among them, the IC average run
length (ARL0), the control limit (L) and the target shift size (δtgt) are directly
related to the CUSUM chart. Their impact are thus studied in many different
papers such as in the work of Qiu (2013). The other parameter that has the
most significant impact on the detection power of the method is the block length.
To illustrate this, we present in the following some simulations which show the
influence of the block length, the block bootstrap method and the number of IC
stations included in the pool on the shifts detection. The Phase III parameters,
which affect the estimation of the shifts characteristics but not the detection power
(alerts) of the method, will not be studied here.

Influence of the block bootstrap

Figure 3.11 displays the out-of-control average run lengths, denoted ARL1, of the
monitoring method as a function of the shift size. The ARL1 represents the mean
number of samples collected from the appearance of a shift to the alert of a method.
For same values of IC average run length (ARL0), a method has thus better per-
formances if its ARL1 values are lower. Those ARL1 values are computed using
the moving block bootstrap method for different block lengths (BBL), which are
specified in the legend. The figure also shows the ARL1 values for the monitor-
ing scheme calibrated using the non-overlapping block bootstrap (NBB), with a
block length equal to 50. This value of 50 was selected using Algorithm 3 and is
optimal for NBB. The ARL1 values are then computed as follows. For each value
of the block length and for the NBB method, the control limits of the CUSUM
chart are calibrated using Algorithm 1 to reach an IC average run length equal to
ARL0 = 200 with an accuracy of ρ = 2 over B = 2000 runs. With this method and
for a target shift size equal to δtgt = 1.5, the control limits are equal to L = 9.04 for
BBL = 5, L = 13.5 for BBL = 10, L = 18.9 for BBL = 54 (the proposed method),
L = 9.8 for BBL = 100 and L = 19.7 for the NBB method with BBL = 50.
Then, at each run, data are sampled per blocks of 500 observations from the IC
stations and are concatenated to form “new” IC series containing 2000 values (four
blocks are thus selected for each series). Artificial deviations of various sizes are
added on top of those IC series (xic). Finally, the average run length ARL1 is
computed over 2000 runs. In practice, we simulate three different shapes for the
deviations:

• jumps: x(t) = xic(t) + δ ;

• drifts: x(t) = xic(t) + δ
500 (t)a, where a is randomly selected in the range

[1.5, 2] ;

• oscillating shifts: x(t) = xic(t) + sin (ηπt)δ, where η is randomly selected in
the range [0.02, 0.2].
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Figure 3.11: Out-of-control average run length, ARL1, as a function of the shift size. The
ARL1s are computed for the moving block bootstrap method with different block lengths
(BBL), which are specified in the legend. The monitoring method is also designed with
the non-overlapping block bootstrap (NBB in the legend) with a block length equal to 50.
The results are obtained by simulations based on IC data that are smoothed on a yearly
scale.

As can be seen in Figure 3.11, using the non-overlapping BB instead of the mov-
ing BB does not change the performances of the method. This conclusion is also
valid for the circular BB since we have enough observations. All three methods
can therefore be used without affecting the monitoring results. On the contrary,
the choice of block length affects the performances of the method. Few changes
are observed for drifts, which are the easiest deviations to detect. More differences
appear however for jumps and oscillating shifts.
When the block length is equal to 5 or 10, the CUSUM chart is calibrated on series
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that are composed of a large number of blocks. Abrupt changes often appear from
one block to another, which creates many alerts. The control limit of the chart is
thus lower than with the proposed method, which has a block length equal to 54.
When the block length is equal to 100, the chart is calibrated on series that contain
fewer but longer blocks. Inside those blocks, the data have long positive autocorre-
lation since the long-term biases are smoothed on 365 days. The accumulation of
small positive values inside a block leads then to many alerts and the control limit
is again decreased with respect to the proposed method. The block length which is
selected in this chapter is equal to 54 and is between those two regimes. It takes the
main part of the autocorrelation into account while at the same time designing a
chart which is not over-sensitive. Indeed, the control chart calibrated with a block
length equal to 54 has the highest ARL1 values when no shifts are simulated (i.e.
the first values in the figure around 450). Hence, Algorithm 3, which was used to
select the block length at 54, appears to work correctly and can be used in other
applications to choose the block length.

Note that when no shifts are simulated, the ARL1 values are larger (around 400-
450) than the pre-specified rate of false positive ARL0 = 200. This is expected
since the chart was calibrated for the different scenarios on IC series composed of
blocks of smaller lengths (equal to respectively 5, 10, 50, 54 and 100) than those
used here, which contain 500 values. This value of 500 is selected to compare the
different scenarios on series that are similar to the actual data. If they were tested
on resampled series that were composed of blocks of length equal to respectively
5, 10, 50, 54 and 100, then all methods would have shown similar performances.
What interest us here is not to test that the methods designed with different block
lengths are well calibrated, but to evaluate their performances on simulated shifts
that are close to the actual deviations.

Influence of the pool of IC stations

Figure 3.12 displays the ARL1 values of the monitoring method calibrated on dif-
ferent number of (IC) stations as a function of the shift size. Those ARL1 values
are computed as follows. For each particular pool, the control limits of the CUSUM
chart are first calibrated to reach an IC average run length equal to ARL0 = 200
with an accuracy of ρ = 2 using Algorithm 1. For a target shift size equal to
δtgt = 1.4 and B = 2000 runs, the control limits are selected with this method
at L = 18.8 for NIC = 40, L = 21.4 for NIC = 60, L = 21.2 for NIC = 119
(the proposed method), and L = 14.9 for NIC = 243. Note that same conclusions
can be drawn with other values of the target shift size. NIC = 243 corresponds
to a scheme calibrated on the entire network. Although the network contains 278
stations, some stations are excluded since they contain few values on the period
studied. When smoothing the data with a MA filter of length equal to one year
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in (3.3.3), we impose that each moving window should contain at least 10% of ob-
servations to produce a valid value for µ̂2(i, t). After this smoothing step, we obtain
stations that do not contain any value for µ̂2(i, t) on the entire period studied and
remove them from the network.
To compute the ARL1 values, we sample data per blocks of 54 observations from
a subset containing NIC = 119 stations, which corresponds to the pool selected
with the procedure described in Section 3.4.1. We concatenate those blocks to form
“new” IC series containing 2000 values and artificial deviations of various sizes δ are
added on top of those IC series. Finally, the average run length ARL1 is computed
over 2000 runs. As in the previous simulation, we simulate three general shapes
for the deviations: jumps, drifts and oscillating shifts.

As can be seen in Figure 3.12, the detection power of the chart does not change
much with different pools, except for oscillating shifts. When the method is cali-
brated to reach a value of ARL0 = 200 on the whole network, it has a low control
limit value to be robust against the numerous deviations of the data. The method
has thus lower ARL1 values when monitoring a subset of NIC = 119 more stable
series, as can be seen in the figure. When the pool is small and contains 40 stations,
which represents only 5.3% of the data, we expect that the control limit of the chart
would be higher than with a larger pool since the method is calibrated on stations
that are particularly stable. We observe a different situation however, since some
stations have a short observing period. Those are included in the pool because
they have a very low variance despite the fact that they may not be aligned with
the median of the network (see the clustering procedure which is applied on the
stability criterion defined in (3.4.1)). When designed on those stations, the chart
is thus often in alerts, which leads to lower values of the control limit with respect
to a method calibrated on the proposed pool of 119 series. Its ARL1 values are
thus lower.
In between those two extremes cases, few differences are visible between different
pools. The control scheme calibrated on a pool containing 60 stations (which cor-
responds to 10.8% of the data) has for instance similar performances as the same
scheme adjusted on 119 series (29.1% of the data). There is thus some flexibility
to choose the number of IC series to include in the pool. For this reason, using
different clustering methods does not affect significantly the performances of the
monitoring scheme.
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a: ARL1 values for jumps.
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b: ARL1 values for drifts.
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Figure 3.12: Out-of-control average run length, ARL1, as a function of the shift size. The
ARL1s are computed for the control scheme calibrated on subsets containing different
numbers of IC series, which are specified in the legend. The results are obtained by
simulations based on IC data that are smoothed on a yearly scale.

3.7.3 Additional results for the composite (Nc)

The developed monitoring method has been applied to the number of spots Ns,
groups Ng and composites Nc = Ns + 10Ng at two different scales for the 278
stations in the database. That represents a large amount of information that has
not been completely analysed yet. In Section 3.5, we present results for typical
in-control (IC) and out-of-control (OC) stations, for analysing the high-frequency
as well as low frequency deviations in Nc. The station FU is also analysed at two
different scales. In this appendix, we present more results about some prominent
deviations that occurred in Nc. The persisting drifts are first displayed for µ̂2
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smoothed on a year. The high-frequency deviations are then shown for µ̂2 smoothed
on 27 days.
The figures presented in the following are composed of four panels: the upper panel
exposes the xeh(i, t) of (3.3.3) for a particular station, the second panel shows the
residuals defined in (3.4.3) for the station, the third panel represents the CUSUM
statistics applied to the residuals in square-root scale whereas the lower panel
displays the characteristics (magnitude and shape) of the shifts predicted by the
support vector machine procedures.
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Figure 3.13: The control scheme applied on the data from observer Gerard (GE) in
Belgium over the period studied (1981-2019). b) Similar figure for the station Kislovodsk
(KS) in Russia over the same period.

In this subsection, we present additional examples of prominent drifts observed in
the composite Nc smoothed on a year. A downward deviation is visible at the end
of the data from the station GE in Figure 3.13. The station GE was composed of
a single dedicated observer living in Belgium. The deviation observed in the series
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Figure 3.14: The control scheme applied on the data from the Ebro Observatory (EB) in
Spain over the period studied (1981-2019). b) Similar figure for the data from observer
DeBacker (DB) in Belgium over the same period.

is caused by a change of location since the observer moved to another residence at
the end of the observations. The eyesight of the observer may also have declined
with time, which may explain the drop in the series as well. A slight decrease is
also visible in the station Kislovodsk (KS) in Russia from mid 2008 till mid 2009.
This temporary downward drift may be linked to the installation of a CCD camera
in 2008. In 2010, the station also switches to digital image processing, which may
cause the slight increase observed afterward. In Figure 3.14, a deviation appears in
the end of the data from the Ebro Observatory (EB) in Spain, which is otherwise
very stable. It is probably caused by a change in the camera, which led to problems
with the subsequent image treatment. The software was able to process the images
again after enhancing the contrast, at the expense of the smallest details in the
images. This may probably explain the decrease that we observe at the end of the
series. In 1984, the single-observer station DB in Belgium switched from direct
observation of the Sun to a projection method that enables the precise drawing of
the sunspots. This triggers the small downward deviation observed in the second
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half of the 1990s since the smallest spots were harder to see with the new procedure.
In 2000, the observer bought a new filter, which allowed him to better see the
smallest spots. The observer also had more personal time to carefully count the
spots and groups. These changes cause a rapid upward shift around 2000-2001 that
brings the level of the station back, aligned with those of the network.

Higher frequency monitoring
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Figure 3.15: The control scheme applied on the data from the observatory of Uccle (UC)
in Belgium over the period studied (1981-2019). b) Similar figure for the station Quezon
(QU) in Philippines over the same period.

We present here typical examples of major jumps that occurred in the composite
Nc smoothed on 27 days. Figure 3.15 shows the method applied to the data from
the station Uccle (UC), in Belgium. UC is stable over time but suffers however
from a large jump in 1999, already visible in previous analyses (Clette, 2013). This
deviating episode is related to the intense participation of a particular observer
that did not count with the same precision than the other members of the team.
He was recruited at a time where there was a lack of observers but finally stopped
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Figure 3.16: The control scheme applied on the data from the Southern Cross Observatory
(SG) in Bolivia over the period studied (1981-2019). b) Similar figure for the Observatory
of Locarno (LO) in Switzerland over the same period.

observing after a while. The station Quezon (QU) in Philippines experiences more
variations over time. They are likely caused by an alternation of observers as in the
station San-Miguel (SM) presented in Section 3.5.2. Figure 3.16 displays another
type of deviations. The observer from the Southern Cross Observatory (SG) in
Bolivia counts more spots than the network at the solar minima (around 1986,
1996 and 2008). This is particularly visible in the three spikes that appear at
the beginning of the period studied, soon after he starts observing. Since similar
deviations do not happen later in the series, the spikes are most probably related to
the learning curve of the observer. We observe later around 1996 and 2008 slight
excesses of spots that are also visible in other stations. They may be linked to
particular errors that only occur at solar minima when there are few or even no
spots on the Sun: some observers tend to over-scrutinize the Sun and may count
one or two spots in excess. This effect is not observed in other parts of the solar
cycles, when the sunspots are more numerous. Similar deviations are also visible
in the observations of the station Locarno (LO) in Switzerland around the solar
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minima of 1986 (cycle 22).

3.7.4 Results for the number of spots (Ns) and groups (Ng)

The monitoring method has been applied to the data from station FU in Figure
3.9 for Nc. Same results are displayed here in Figure 3.17 for the number of spots
and in Figure 3.18 for the groups. As stated in Section 3.5, FU is a stable station
which is included in the pool. It is presented here since the few deviations of
FU are particularly visible and composed of two different types: short-time and
persisting shifts. As can be seen in the figures, the proposed method can cope with
the different distributions and autocorrelation structures of the data and produces
coherent results for Ns, Ng as well as Nc.
Since Ns, Ng and Nc are counted on the same image of the Sun captured at a
particular moment of the day, similar deviating patterns are visible in the three
quantities. The deviations are usually more apparent in Ns than in Ng or Nc since
the groups are more robust to counting errors than the individual spots. The jump
that occurs in 2007 is for instance much lower in Ng and Nc than in Ns. Note
that the results presented earlier in this chapter focus on Nc, which is closer to the
International Sunspot Number.
By looking separately at Ns and Ng, we may also gather more information about
the deviations. The drift that appears at the end of the series is gradual in Ns
and steep in Ng. It may express the fact that the observer progressively sees less
spots, which after a certain time leads to a decrease in the number of groups as
well. Further researches are needed to see if some types of deviations in Nc may
be related to rather Ns than Ng or conversely.
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Figure 3.17: The control scheme applied on the number of spots smoothed on 27 days
from station FU in Japan over the period studied (1981-2019). b) Similar figure for Ns
smoothed on 365 days in FU over the same period.
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Figure 3.18: The control scheme applied on the number of groups smoothed on 27 days
from station FU in Japan over the period studied (1981-2019). b) Similar figure for Ng
smoothed on 365 days in FU over the same period.



Chapter 4

Neural-networks based monitoring of the sunspot
numbers

Artificial neural networks are powerful computing systems that were initially in-
spired by the functioning of the brain. Due to their capacity to well represent
numerous non-linear problems with a potentially large number of inputs, they are
now used in many fields with growing interest. Predicting the size of the deviations
occurring in the sunspot numbers and classifying their shapes are typical examples
were such tools could be used and are expected to perform well. To be effective on
complex tasks however, the neural networks need to be trained on a large number
of labelled data, which are not available for all applications. Those methods could
also be brittle against noises or targeted attacks and have a poor algorithm trans-
parency. Hence, they require consequent post-analysis to be interpretable. For the
sunspot numbers however, the problem of the absence of labelled data has already
been solved in Chapter 3, by training the support vector machines on simulations.
Having obtained good results with this method despite the noise of the data, we
decide to construct neural networks using equivalent simulations in the following.
The monitoring procedure developed in Chapter 3 will then allow us to compare
our results with a fully-understood and interpretable method.

In this chapter, we first construct feed-forward neural networks for predicting the
shifts sizes and classifying the shapes of the deviations in the sunspot numbers.
Then, we also design recurrent neural networks, which are more adapted to deal
with time series data, for the same purposes. Those recurrent networks achieve
the same performances as the feed-forward networks with less parameters. Both
(recurrent and feed-forward) networks are finally compared with the approach de-
veloped in Chapter 3 for various shift sizes and shapes. The neural networks-based
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control schemes appear to outperform the previous method on several cases, espe-
cially to detect large or oscillating shifts. Interesting results are also obtained by
analysing the shapes of the deviations predicted by the networks along time.

4.1 Introduction

The monitoring procedure developed in Chapter 3 relies on efficient and well-
studied statistical procedures. The method is composed of two main parts: (1)
a CUSUM chart designed by block bootstrap that is responsible for the monitoring
and (2) support vector machine (SVM) procedures that predict the size and shape
of the shift after an alert has been raised. This method will thus be referred to
as “CUSVM”, i.e. a contraction between the CUSUM and the SVM in the follow-
ing. Stepping back from our proposition, we soon realize that some aspects of the
CUSVM method can be improved.

1. Numerous stages of the procedure: The method requires many steps,
from the estimation of the long-term error of the stations to the predictions of
the SVMs. Although the CUSUM chart is simple to understand with respect
to more elaborated charts such as those described in Qiu et al. (2017) and
well known for statisticians, the successive stages of the method are difficult
to track.

2. Problem of the parameters adjustment: The procedure contains only
few parameters but some of them are difficult to adjust. We partially solve
this issue by proposing several pseudo-algorithms to calibrate them. These al-
gorithms are however time-consuming and some of them are not fully adapted
to the complex features of the sunspot numbers. The target shift size (δtgt)
is for instance estimated on out-of-control series using a formula (defined
in (3.7.1)) that is not valid for autocorrelated data.

3. Non-optimality of the CUSUM for all shift sizes: The CUSUM chart is
designed to optimally detect a target shift size, denoted by δtgt in Chapter 3.
Hence, its allowance parameter is set to k = δtgt/2 (fixed value). In practice
however, the data experience numerous shifts of various sizes. The chart is
thus suboptimal for identifying many deviations.

4. “Exploding” CUSUM values: The control limits of the CUSUM chart
are not directly expressed into the units of the shift sizes (i.e. a control limit
equal to 14 does not mean that the shift size needs to be larger than 14 to
trigger an alert). Since the CUSUM chart accumulates the deviations of the
data over time, the chart statistics can also take very high values and need
to be cut at a maximal value (|C+

j |, |C
−
j |≤ 2L) to avoid introducing latency

in the detection process.
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To solve some of the above-mentioned limitations, we develop in the following dif-
ferent procedures based on neural networks for monitoring the sunspot numbers.

The chapter is structured as follows. In Section 4.2, a brief introduction to the
main concepts of artificial neural networks is presented. Then, feed-forward neural
networks are constructed and trained for the monitoring in Section 4.3. The main
results are then showed in Section 4.4. Those include a study of the shapes of the
deviations along time. In Section 4.5, more parsimonious recurrent neural networks
are also designed for the monitoring. Before concluding, the performances of the
different methods (CUSVM and neural network-based control schemes) are then
compared on various shift sizes and shapes.

4.2 Overview of neural networks

a

b

Figure 4.1: (a) Schematic represent of a single neuron or unit. (b) Drawing of a fully-
connected neural network with two hidden layers. These figures come from Verleysen and
Lee (2017).

Artificial neural network (NN) is a generic term that designates a wide range of
models. Those were initially inspired by the neurons in the brain. The artificial
neurons, most commonly named units, are the building blocks of the NNs. They are
modelled by a non-linear mathematical function σ, called the activation function,
which usually takes many inputs x and produces a single output y:

y = σ(wTx), (4.2.1)

where the ws are the parameters, called weights of the neuron. Most of the time,
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the neurons also have an additive bias, w0. In this case, x should be augmented
by one unity, x0 = 1, in (4.2.1). Figure 4.1a shows a simplified representation of a
neuron/unit with bias.

The neurons are assembled into interconnected layers that form together a neu-
ral network, as schematically represented in Figure 4.1b. A network is typically
composed of several layers. The input layer is the first layer of a network. It re-
ceives the input data and passes them to the network. The last layer, called the
output layer, contains the output of the NN. The format of the output depends on
the problem for which the network has been designed. They can be for instance
single numbers or vectors, limited to specified range or expressed in probabilities.
The network has also one or several hidden layers that contain the artificial neurons.

Figure 4.2: Schematic representation of recurrent and a feed-forward neural networks
from De Mulder et al. (2014). Figure on ResearchGate. Available from: https:
//www.researchgate.net/figure/Recurrent-versus-feedforward-neural-network_
fig5_266204519 [accessed 29 Apr, 2021].

The networks are used for a large variety of applications such as function approx-
imation or regression, classification (including visual recognition), data processing
(such as filtering or compression) or even time-series analysis. In general, there
are two main classes of networks: those with feed-forward or feed-back topology.
In the feed-forward topology (right-hand side of Figure 4.2), the information flows
from the input layer to the output layer in one direction. The outputs of the neu-
rons are thus used as inputs for the neurons in the next layer. Those networks
may be composed of different types of layers, each type more adapted to solve a
particular category of tasks. The most commonly-used layer is the fully-connected,

https://www.researchgate.net/figure/Recurrent-versus-feedforward-neural-network_fig5_266204519
https://www.researchgate.net/figure/Recurrent-versus-feedforward-neural-network_fig5_266204519
https://www.researchgate.net/figure/Recurrent-versus-feedforward-neural-network_fig5_266204519
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which connects every neuron of a layer to every neuron of the next layer. Those
layers are deployed in many networks that are constructed for a large variety of
applications. There are also layers designed for reshaping or normalizing the input
data. Others are constructed for limiting the overfitting by adding noise on the
input data or by appending a regularization method such as the dropout 1 to the
networks. These regularization methods are however not sufficient to deal with
images or videos which involve a large number of parameters (e.g. a single HD im-
age contains millions of pixels). Those objects are better handled by special types
of sparse networks: the convolutional neural networks (CNN). They are composed
of convolutional and pooling layers, which model the structure of the data with
increasing complexity using different types of filters.
In feed-back topology (left-hand side of Figure 4.2), the outputs of a layer can also
be used as inputs for the previous layers or for the layer itself. Those networks
are called recurrent neural networks. They are composed of at least one type of
recurrent layers, which allow the network to have a “memory”, i.e. to retain the
state of the previous calculations of the network. Hence, the recurrent NNs are
mainly used in language processing (Mikolov et al., 2010) and for time-series anal-
ysis (Zemouri et al., 2003; Langkvist et al., 2014).

A neural network can be thought of as a non-linear version of the simple linear
regression, with typically many more parameters. The non-linearities of the net-
work are introduced through the activation functions (σ). These functions should
be differentiable and non-linear, otherwise the network would only be composed
of linear functions. It would thus be unable to approximate non-linear problems.
The hyperbolic tangent (σ(x) = ex−e−x

ex+e−x ) and the sigmoid (σ(x) = 1
1+e−x ) activa-

tion functions are for instance often used in shallow (i.e. less than three hidden
layers) networks. Since their range is limited ([0, 1] for the sigmoid and [−1, 1] for
the hyperbolic tangent), networks with a large number of parameters often suffer
from the vanishing gradient problem2 with those functions during the training.
Hence, the rectified linear unit (σ(x) = max(0, x)) is preferred for deep (three or
more hidden layers) networks and CNNs. Usually, all hidden layers share the same
activation function.
The activation function of the output layer has a different role: it shapes the form
of the output. Hence, no activation function (σ(x) = x) are needed for most
regression problems. The binary classification often relies on the sigmoid or the
hyperbolic tangent whereas multi-class classification problems depend on the soft-

1With the dropout, some random neurons are temporarily disabled during the training to cal-
ibrate more sparse networks (the method avoids the co-adaptation of neurons to correct mistakes
of others). For more information about the dropout, we refer to Srivastava et al. (2014).

2During the training, the parameters of the networks are progressively adjusted by computing
the gradient of a loss-function with respect to those parameters. In networks containing a large
number of parameters, the gradient often becomes very close to zero, preventing further training.
This effect is called the vanishing gradient problem.



114 Chapter 4. Neural-networks based monitoring of the sunspot numbers

max (σ(x)c = exc∑K
j=1 e

xj
, where c = 1, ...,K and x = (x1, ...., xK)). The softmax

takes a vector of K inputs, corresponding to the number of different classes, and
normalizes them. It returns thus K values between zero and one that sum up to
one. Those represent the probability that the output belongs to each class.
For a more systematic overview of the main activation functions, we refer to Led-
erer (2021).

The construction of a neural network starts by defining its architecture: its number
and types of layers, number of neurons in each layer and its activation functions.
The parameters of the network should then be adjusted on the data as in a simple
linear regression. However, since the networks are typically much more complex
and non-linear, the estimation of the parameters is more complicated and requires
many iterations.
In this work, the weights (w) of the networks are adjusted by supervised learning.
With this method, the values of the weights are gradually learned from pairs of
examples, which are composed of an input vector x and its corresponding output
y (also called label). Those pairs form the training set. The weights are then
progressively adjusted, at each iteration, to maximize the prediction results of the
network on this set of examples.
The weights of the network are first randomly initialized. The training set is also
randomly partitioned into subsets, called batches, of fixed size. Note that a batch
contains thus one or several examples, which are in turn composed of an input
vector (x) and its corresponding output (y). After a batch of examples has been
presented to the network, the errors between the predicted outputs and the true
values of the outputs are evaluated using a loss function (L). Then, the weights
are updated to minimize the loss function:

wt+1 = wt − α
∂L

∂w

ˇ

ˇ

ˇ

ˇ

w(t)

, (4.2.2)

where α is the learning rate of the algorithm. The computation of the gradient
of the loss-function with respect to the weights is the most time-consuming stage
of the algorithm. It is done today by a large variety of procedures which mostly
rely on the back-propagation algorithm (Rumelhart et al., 1986), with some adap-
tations. This algorithm efficiently computes the gradient in each layer at the time,
starting from the last layer and progressing backward toward the first layer. Af-
ter updating the weights, the optimization proceeds with the other batches till all
training examples have been seen by the network, which completes an epoch. The
learning then continues for a pre-defined number of epochs.

The batch size represents thus the number of training examples that are seen by the
networks in one iteration. There are three different ways to optimize the weights
of the networks: the batch, stochastic and mini-batch modes. In the first mode
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(batch gradient descent), the batch size is equal to the length of the training set.
Hence, the parameters of the networks are updated at each iteration on the entire
training set. In this mode, one iteration corresponds thus to one epoch. This takes
time and also uses a lot of memory. Moreover, since the gradient is computed on
all training examples, the convergence is stable but may be exposed to local min-
ima. When designed by stochastic gradient descent, the batch size of the networks
is on the contrary equal to one, meaning that the parameters are adjusted after
each single example. The frequent updates of the method give thus immediate
information about the performances and the rate of convergence of the algorithm.
In some applications, the stochastic gradient descent can also lead to a quicker
convergence since the noisy updating process prevents the networks parameters
from being stuck in local minima. In others, the inaccurate estimation of the gra-
dient causes oscillations in the design of the parameters that may overshoot the
minima. The numerous iterations required by the method may also slow down the
convergence when working with large datasets. In general, an optimization with
a large batch size converges thus slowly with accurate estimates of the gradient of
the loss function at each step whereas small batch sizes lead to a quick but noisy
convergence.
Hence, the mini-batch gradient descent, which combines the advantages of both
methods, is the most commonly-used algorithm in practice. In this mode, the
batch size is superior to one but inferior to the length of the training set. It is
usually selected as a divider of the size of the training set or as a power of two (32,
64, 128, etc.), which depends on the memory requirements of the method. With
this mode, the gradient of the loss-function is computed on batches of examples,
which accelerates the convergence of the algorithm with respect to the stochastic
or batch gradient descent. It also provides more robust convergence than the batch
mode, avoiding local minima.
Another important hyper-parameter of the optimization process is the number of
epochs, which represents the number of times that the networks see the complete
training set. A too small number of epochs usually leads to under-fitting, since
the parameters of the networks are progressively adjusted at each iteration. A too
high value may on the contrary cause over-fitting. Hence, this number should be
carefully selected. This can be done by drawing the learning curve of the networks,
i.e. by representing the values of the loss function evaluated on the validation
set — another set of examples distinct from the training set— as a function of
the number of epochs. The number of epochs may then be selected at the value
where the curve stabilises and is not decreased by more epochs. Note that the
values of the loss function can even increase with additional epochs, which indi-
cates over-fitting. As this approach is slow, the number of epochs is usually set to
a high value and replaced by the early-stopping method. With this method, the
training is stopped when the loss-function evaluated on the validation set stabilises.

As seen in (4.2.2), the weights of the network are optimized using a loss-function.
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A poor choice of loss-function could therefore lead to bad prediction results, i.e.
predictions that do not correspond to the true values of the outputs. Hence, these
functions should be selected properly, depending on the problem at hand.
For a regression problem, a typical loss-function is the mean-squared error. The
cross-entropy is on the contrary widely used for classification purposes. The binary
cross-entropy is designed for binary classification and writes as:

BCE(y, ŷ) = −
∑
i

(yilog(ŷi) + (1− yi)log(1− ŷi)),

where yi represents the true label of the example i (either zero or one) and ŷi is the
label predicted by the network. It is most likely a continuous value between zero
and one, if an appropriate activation function is selected. The binary cross-entropy
is thus computed on each training example i and the results are summed. It reaches
a minimum at zero, which corresponds to a situation where all predictions are equal
to the true values of the labels. With this formula, the miss-classifications are pe-
nalized and those that have the highest probability are also the most penalized.
The cross-entropy can also be adapted for multi-class classification problems through
the categorical cross-entropy:

CCE(y, ŷ) = −
∑
i

K∑
c=1

(yi,c log(ŷi,c)),

where yi represents here the true label of the example i in a categorical format:
typically a vector of length K with zero everywhere except at one location corre-
sponding to the true class of the example, where it is equal to one. yi,c denotes
then a particular element of the vector (either 0 or 1) which corresponds to a single
class. Similarly, pyi is the predicted output. It is a vector of length K containing the
probabilities that the example belongs to each class. It usually corresponds to the
outputs of the softmax activation function. ŷi,c corresponds thus to the probability
that the example belongs to a single class. Similarly to the binary cross-entropy,
the categorical cross-entropy is computed over all classes and examples. It penal-
izes the mis-classifications and in particular those that have the highest probability.
Note that other loss-functions exist in the literature but are not presented here.

When the training is completed, the prediction performances of the network should
be evaluated on a third set of examples — distinct from the training and validation
sets — called the testing set. Three different sets of data are thus used to construct
a neural network. The parameters, i.e. the weights of the network are adjusted
on the training set whereas the validation set is used to choose the values of the
hyper-parameters such as the number of hidden layers or the number of epochs.
Both sets are thus used during the learning of the method. The performances of
the network are then evaluated on the testing set, which contains examples that
were not used during the learning stage. The prediction capability of the network
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on this testing set could be measured using different metrics: the mean-squared er-
ror (regression), the mean absolute error (regression), the accuracy (classification),
etc. The metrics are thus similar to the loss-functions except that they do not need
to be differentiable, contrarily to the loss-function which are used for the training.
If the accuracy of the network does not prove to be sufficient, the training sets or
the number of epochs could be augmented. The hyper-parameters including the
architecture of the network (i.e. types of layers, number of layers and neurons)
could also be modified until the desired accuracy is reached.

This closes our short overview of the artificial neural networks. For more infor-
mation than the simple glance given in this section, we recommend the books of
Bishop (2006) and Haykin (2009).

4.3 Feed-forward neural networks for monitoring

Now that we understand the basics about neural networks, we may explain our
approach. In this part, we develop two different kinds of feed-forward networks,
for regression and classification purposes. The first kind of networks is designed
to predict, in a continuous range, the size of the encountered deviations. Those
deviations can be close or even equal to zero if the stations are in-control. Then,
we construct a second kind of networks to classify the shape of the shifts into three
different classes: sudden jumps, drifts and oscillating shifts.
In the following, we first present the quantities that will be monitored by the net-
works. Then, we explain how the training sets may be constructed, by simulations,
to obtain an efficient procedure. After designing the training data, we move on
to the description of the networks. The architecture, the loss-function, activation
functions and the other parameters of the networks are presented for the regression
problem. Then, the networks are described for the classification problem.

4.3.1 Data

Different quantities could be monitored by the networks. In Chapter 3, we ap-
ply our monitoring method to the standardised bias, ε̂µ̂2

(i, t), defined in (3.4.3).
The standardisation procedure requires however the estimation of the mean and
the variance of the in-control (IC) stations using K nearest neighbours regression
method, which is time-consuming. Moreover, the ε̂µ̂2

(i, t)s are visually further away
from the traditional scaling-factors (well-known for the data experts) than the un-
standardised long-term bias, µ̂2(i, t) defined in (3.3.4). The standardisation of the
long-term bias was applied earlier to match the definition of the CUSUM chart
(see (3.4.4)), which requires that the IC observations have a mean equal to zero
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and a variance equal to one. Here however, such a standardisation is not needed.
We therefore choose to monitor the (unstandardised) long-term bias, µ̂2(i, t).
We still remove the level of the stations before the monitoring though. Those levels
typically account for differences in instruments or counting methodologies of the
stations. They do not correspond to actual errors but model the intrinsic count-
ing standards of the stations. They should be untangled from the long-term bias,
otherwise a station with a more accurate telescope than most stations in the net-
work could systematically be tagged as out-of-control. Note that since we include
a level in the sunspot numbers model of (3.3.1), the mean of the long-term bias is
(already) close to zero, without standardisation.
In the following, we will monitor the long-term bias at different scales to detect
different kinds of deviations. We study in particular the bias at a yearly scale
and at 27 days, to allow the comparison with the CUSVM method developed in
Chapter 3. As stated previously, the data smoothed on 27 days contains around
933000 values whereas those smoothed on a year are composed of around 1092000
values.

4.3.2 Generation of the sets

Since only a limited number of (unlabelled) observations are available, the training
and testing sets are constructed by simulations. As for the SVM procedure, we do
not create a validation set here. The hyper-parameters of the networks are adjusted
on multiple training and testing sets, also constructed by simulations. Those sets
are composed of input-output pairs. The inputs of the network are sequences of
data that are simultaneously presented to the networks. In this work, they are
randomly selected (with repetition) from the IC biases µ̂2(iic, t) by windows of m
consecutive values. Then, we add on top of these series various types of deviations
with different sizes and shapes. The outputs (also called labels) corresponding to
these inputs are the shift sizes for the regression and the shift shapes for the clas-
sification problem.
With this simple method inspired by the work of Brian Hwarng (2004) and our
previous achievements in support vector machines in Chapter 3, the networks are
trained on autocorrelated inputs. The networks are then able to take the autocor-
relation of the data into account when making predictions about the characteristics
of the shifts, without requiring to build complex time-series models.

The training sets are created as follows. The sizes of the shifts, δ ∈ R, are first
randomly sampled from a normal distribution centred around zero. The variance
of the distribution depends on the variations of the data. It is selected here at
one. Then, a series xic of m consecutive observations is randomly sampled from
the IC bias, for each shift size. Note that this procedure is equivalent to generate
new series composed of only one block of length m using the block bootstrap.
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Three types of general deviations, similar to those used in Qiu et al. (2017) and in
Chapter 3, are then artificially constructed on top of the series:

1. jumps: x(t) = xic(t) + δh(t), with h(t) =

{
1 if t > τ
0 otherwise. and τ in [0,m] ;

2. drifts with varying power-law functions: x(t) = xic(t) + δ
b (t)a, where a is

randomly selected in the range [1, 2] and b = 500 ;

3. oscillating shifts with different frequencies: x(t) = xic(t) + δ sin (ηπt+ φ),
where η is randomly selected in the range [ π2m ,

2π
m ] and φ in [0, m4 ].

Those deviations were designed to visually correspond to the actual deviations
observed in the sunspot data. With this training set, the networks appear to
correctly predict the shift sizes (regression problem). For the classification how-
ever, the networks detect mostly jumps and few drifts and oscillating shifts, which
sometimes conflicts with our visual analysis. To correct this effect, we slightly
modify the training set for the classification problem. The parameter b of the
drifts is set to 100 and the oscillating shifts are defined in a multiplicative frame-
work: x(t) = xic(t) sin (ηπt+ φ)δ. Hence, steeper drifts and oscillating shifts with
imperfect periodicity that better correspond to the data are constructed for the
classification. Those appear to produce better results in practice. Note that the
deviations that are simulated here are also slightly different from those used for
training the support vector machines in the CUSVM procedure. Indeed, the net-
works should predict the shapes and sizes of all observations, not only those that
are out-of-control and they are trained on unstandardised bias.
In total, 50000 examples are generated, with 40000 (4/5) being used for the train-
ing and 10000 (1/5) for the testing. The examples contain deviations that are
similar to those of the stations. They are also general to ensure the efficiency of
the networks on unseen shifts. After training, the methods may be applied to
the real observations for the monitoring. Before being presented to the networks,
the data should be prepared into sliding windows of m consecutive observations.
Since the networks do not support missing values, they are trained on series xic
which do not contain any missing observation. For the actual monitoring of the
series however, the missing observations are imputed. The imputation procedure
is the same as those used by SVM: missing observations occurring at the beginning
of the input vector are simply replaced by the first valid observation encountered,
while the “intermediate” gaps of the input vector are filled by a linear interpolation.

The number of inputs, m, is a parameter which affects the autocorrelation that is
learned by the network. It should be sufficiently large to reflect the main part of
the autocorrelation of the data without being too large to not slow down the learn-
ing. A large number of inputs also leads to a large number of network parameters,
which may result in over-fitting.
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The number of inputs can be treated as another hyper-parameter of the networks.
It could be adjusted to obtain the best prediction results, evaluated using a par-
ticular metric. This parameter can also be selected based on the autocorrelation
of the data, as follows. The autocorrelation may be computed until a high lag
(lag=150 has be chosen for this study) in the IC series. Then, the lag at which
the autocorrelation falls below a pre-defined threshold may be computed in those
series. m may finally be selected as the mean of those lags. This method is still
empirical since it requires the definition of a threshold. It allows us however to
associate m to an autocorrelation threshold, which has more physical meanings
than simply treating m as another hyper-parameter of the networks. The method
(which is more like a rule of thumb) can also be used for different types of autocor-
relation. It works for biases smoothed on 27 days and on a year, which experience
different autocorrelation structures.

4.3.3 Regression problem

...

...
...
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Figure 4.3: Architecture of the feed-forward neural networks designed for regression pur-
pose.

The first neural networks that we construct will do the actual monitoring. They
are designed to predict the size of the deviations encountered, which may be close
or even equal to zero if the data are in-control. They are thus built for regression
purpose. The architecture of those networks is represented in Figure 4.3. The
input layer receives the input data and passes them to the network. Those inputs
are the bias of the stations, which are thus assumed to be composed of two parts:
a stable component µ̂2(iic, t) and a deviating part f(δ)h(t), δ ∈ R:

µ̂2(i, t) = µ̂2(iic, t) + f(δ)h(t), for h(t) =

{
1 if t > τ
0 otherwise. . (4.3.1)
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The input layer has the same size as the input vector, which is fixed here at m = 50
for the high-frequency monitoring and at m = 100 for the low frequency monitor-
ing. Those values correspond to the lag at which the autocorrelation falls below
a threshold of 0.2 (for m = 50) and 0.75 (for m = 100), since the data that are
smoothed on a year are more autocorrelated than those smoothed on 27 days. The
networks have also a single output neuron corresponding to the predicted size of
the shifts (denoted δ̂).
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Figure 4.4: (a) The mean-squared error (MSE) as a function of the complexity of the
network for different numbers of hidden layers. The complexity corresponds to the number
of neurons in the first layer ; every subsequent layer has half the number of neurons as
the preceding layer. The network is applied on data smoothed on a year. (b) Same figure
for data smoothed on 27 days.

Many different numbers of hidden layers and neurons may then be selected. Un-
fortunately, there are no magic rules for choosing them. The best numbers depend
in a complex way on the size of the training set, the activation functions, the com-
plexity of the task that the network must approximate, the number of the inputs
and outputs, etc. Usually, those numbers are thus selected with a method that
is similar to those used to select the number of epochs. A simple network, with
one hidden layer and only few neurons, is first designed. Then, the complexity of
the network is progressively increased until the testing error stops decreasing with
higher numbers of neurons/layers or when a sufficient level of precision is reached.
In other words, the architecture of the network may be selected to be the simplest
one, which achieves at the same time a sufficient degree of matching (evaluated
using a chosen metric) between the predictions and the true values of the outputs.
This method is illustrated in Figure 4.4, where the mean squared error (MSE) is
represented on the testing set as a function of the number of neurons, for one, two
and three hidden layers. As can be seen, the MSE has a local minima around 40
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with two hidden layers, both for data smoothed on 27 days and on a year. Net-
works with two hidden layers containing respectively 40 and 20 neurons were then
selected, since the gain in performance obtained with three hidden layers and 50 (or
more) neurons is small compared to the costs, in time and complexity. Note that
since the networks are designed on sets that are constructed by simulations, results
vary from one training to another. The MSE values represented in Figure 4.4 are
thus the mean of the values obtained over ten trainings.
With this architecture, the prediction results of the networks (which are evaluated
using the MSE) fulfil our expectations. The networks also reveal no sign of over-
fitting. They contain a total of respectively 4881 and 2881 trainable parameters
for the low and high frequency monitoring. Note that the networks have different
numbers of parameters since they operate on input vectors of different sizes (m).
We use the sigmoid activation function in the hidden layers whereas no activation
function is specified for the output layer, as proposed in Brian Hwarng (2004).
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Figure 4.5: (a) The MSE as a function of the number of epochs, for a network with two
hidden layers of respectively 40 and 20 neurons. The network is applied to data smoothed
on 365 days. (b) Same figure for data smoothed on 27 days.

Then, we train the networks on 30 epochs using an optimizer based on the Adam
algorithm (Kingma and Ba, 2015) with a batch size equal to 50. The MSE is
represented in Figure 4.5 as a function of the number of epochs. It was selected
here at 30 for saving some computational time, although the number of epochs
could be increased without risk of over-fitting. The Adam optimization method
was also selected, to speed the convergence of the training. Without entering
in too much details, Adam combines the mini-batch gradient descent algorithm
presented in the previous section with two other methods: momentum (Polyak,
1964) and root mean square propagation (RMSProp) (Hinton et al., 2012). In the
momentum method, the weights are updated by a linear combination of both the
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gradient of the loss-function at the current time and the gradient at the previous
time. This method accelerates the gradient descent convergence since it favours
the weights updates that are in the same direction, preventing oscillations. In
the RMSProp algorithm, the learning rate is also adapted for each weight. This
method further increases the convergence of the algorithm since it allows large
learning rates initially. Those progressively decrease as the weights are updated to
minimize the risk of overshooting the minima. The learning rate is selected initially
at α = 0.001 3. Note that the training of the networks are done only on CPUs
using the version 3.7.9 of Python with the package keras (Chollet et al., 2015).
During the training and the testing, the prediction errors are evaluated by the
MSE (the MSE serves thus both as the loss-function and metric). With these
parameters, the networks achieve a MSE around 0.41 and 0.44 on the testing set,
for respectively the low and high frequency monitoring. Those values correspond
to a mean absolute percentage error (MAPE), defined in Section (3.4.3), of around
45 and 56 respectively. They are thus higher than the MAPE values obtained in
Chapter 3, which were equal to 26 and 32 respectively. This is expected since
the networks should estimate the size of the deviations for all data (IC and OC),
where the smallest shifts are often the most difficult to detect. Moreover, the
MAPE criterion takes high values for errors that are close to zero, by construction,
see (3.4.9). These values are nevertheless satisfactory for our monitoring problem.

4.3.4 Classification problem

We design a second type of neural networks, for classification purpose. These
networks, represented in Figure 4.6, aim at predicting the shape of the input data
among three different classes: (1) sudden jumps, (2) more progressive drifts and
(3) oscillating shifts. The size of the input layer is selected at m = 100 and m = 50
for the low and high frequency monitoring, as previously. The networks have also
three output neurons since there are three different classes. Many designs are then
possible for the hidden layers. After few tests, we select networks with one fully-
connected layer containing 40 neurons, to obtain an accuracy at least equal to
90% on the testing set. As can be seen in Figure 4.7, such a degree of accuracy
is determined by the monitoring of data smoothed on 27 days, which experience
variations on a larger scale than those smoothed on a year. The networks contain
thus a total of respectively 4163 and 2163 trainable parameters for the low and
high frequency monitoring. We use the sigmoid activation function in the hidden
layer and the softmax for the output layer. The outputs of the network correspond
then to the probabilities that the input belongs to each different class.

The parameters of the networks are then estimated using the RMSprop algorithm
(i.e. mini-batch gradient descent with adaptive learning rate), a widely used opti-

3This is the default value for the Adam optimizer with the package keras (Chollet et al.,
2015).
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Figure 4.6: Architecture of the feed-forward neural networks designed for classification
purpose. The output of the networks corresponds to the probabilities that the input
belongs to each class: jump, drift and oscillating shift.

mizer for classification purpose, with an initial learning rate of 0.001. The learning
is performed on 30 epochs with a batch size equal to 50. During the training,
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Figure 4.7: (a) The accuracy as a function of the complexity of the network for different
numbers of hidden layers. The complexity corresponds to the number of neurons in the
first layer ; every subsequent layer has half the number of neurons as the preceding layer.
The network is applied on data smoothed on a year. (b) Same figure for data smoothed
on 27 days.
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the prediction errors are evaluated by the categorical cross entropy loss-function
whereas the prediction results are measured by the accuracy (metric) in the testing
step. With these parameters, the networks achieve an accuracy of around 96% and
90% respectively, for the low and high frequency monitoring.

4.4 Results

In this section, we apply the neural networks to the long-term bias, µ̂2(i, t), for
predicting the sizes and shapes of the encountered deviations. Figures 4.8 and 4.9
show respectively the networks applied to biases smoothed on a yearly scale and on
27 days. As can be seen, the predictions of the shift sizes closely correspond to the
pace of the long-term bias. The networks identify many types of deviations that
vary over a wide range of values. The downward drift that appears in MT after
1998 (related to the installation of a CCD camera) as well as those that occurred
after 2014 in FU (associated to the health condition of the observer) are well de-
tected by the networks. The sudden jump of 1999 in UC and those that appeared
around 2007 in FU are also well identified.

The outputs of the regression networks correspond to the predicted sizes of the
shifts. They do not contain however information about the status (in-control or
out-of-control) of the stations and cannot provide alerts. To that end, we add on
top of the networks different procedures, which can warn us when the stations are
out-of-control. Those are described below.

4.4.1 Classifier with four classes

One of the most simple way to give alerts is to modify the classifier previously
described to include four classes instead of three: jumps, drifts, oscillating shifts
and a last class which corresponds to in-control data. A series is thus considered to
be out-of-control with this classifier when a deviation of one of the three first classes
is identified. This new classifier could be easily trained using the sets described
in Section 4.3.2, with an additional type of deviation, actually composed only of
in-control data:

1. jumps: x(t) = xic(t) + δh(t), with h(t) =

{
1 if t > τ
0 otherwise. and τ in [0,m] ;

2. drifts with varying power-law functions: x(t) = xic(t) + δ
b (t)a, where a is

randomly selected in the range [1, 2] and b = 500 ;
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Figure 4.8: (a) Upper panel: the long-term bias (µ̂2(i, t)) smoothed on a year from
observer Fujimori-san (FU) in Japan over 1981-2019. Lower panel: the shift sizes and
shapes predicted by the neural networks. The cutoff values (±δcut, δcut = 0.11) are
represented by the two horizontal thick lines. (b) Similar figure for the observatory of
Mitaka (MT) in Japan over the same period.

3. oscillating shifts with different frequencies and phases: x(t) = xic(t)+δ sin (ηπt+ φ),
where η is randomly selected in the range [ π2m ,

2π
m ] and φ in [0, m4 ] ;

4. in-control: x(t) = xic(t).
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Figure 4.9: (a) Upper panel: the long-term bias (µ̂2(i, t)) smoothed on 27 days from
the station FU over 1981-2019. Lower panel: the shift sizes and shapes predicted by
the neural networks. The cutoff values (±δcut, δcut = 0.37) are represented by the two
horizontal thick lines. (b) Similar figure for the observatory of Uccle (UC) in Belgium
over the same period.

With this method however, it is not possible to calibrate the classifier at a desired
rate of false positive. Hence, we propose two others procedures in the following,
which are more complex but allow us to control the rate of false positives. Those
methods are composed of two distinct stages: (1) estimating the characteristics
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of the shifts and (2) using a dedicated procedure to give alerts based on those
estimations. Note that we thus invert here the two main steps of the CUSVM
procedure, where the CUSUM chart first detects the out-of-control situations and
the SVM methods estimate in a second time the characteristics of the deviations.

4.4.2 Simple cut-off values

In a first procedure inspired by the Shewhart chart (presented in Section 3.2.2),
we determine simple cut-off parameters, denoted δ+

cut and δ
−
cut, to discriminate be-

tween in-control (IC) and out-of-control (OC) data. These cuts-off are similar to
the control limits of classical charts. A station is considered to be out-of-control if
its shift size exceeds the cuts-off: δ̂(i, t) > δ+

cut or δ̂(i, t) < δ−cut, where δ̂(i, t) rep-
resents the predicted shift size at time t, in station i. We assume in the following
that δ+

cut = −δ−cut = δcut. The cut-off (δcut) is then adjusted, after the training
of the networks, using a searching algorithm based on the IC average run length.
This method is similar to those used to calibrate the control limits of the CUSUM
chart and is explained below.
After fixing an initial value for the cut-off, new series are generated from the IC
data using the block bootstrap with a block length equal to m. These series are
then arranged into moving windows of m observations and are fed to the networks
which predict the size of the shifts. The run lengths are defined as the number
of observations obtained until a shift size exceeds the cut-off value. The average
run length is finally computed as the mean of the run lengths over a large number
of runs (2000 runs are selected in this chapter). The cut-off is then progressively
adjusted by bisection searching, i.e. by sub-divisions of the searching interval in
half. The algorithm stops when the IC average run length reaches a pre-defined
value at the desired accuracy.
Using this procedure, we calibrate the cut-off value at an average run length of 200
with an accuracy equal to ρ = 2. We obtain a value of δcut = 0.37 and δcut = 0.11
for the high and low frequency monitoring respectively. Those are represented in
the lower panels of Figures 4.8 and 4.9. Note that, contrarily to the control limits
of the CUSUM chart, the cut-off values are directly expressed in the units of the
shift sizes.

With this method, the data are assumed to be OC when the shift size exceeds
the cut-off value, while with the CUSUM chart a station is in alert when the
cumulative sum of its deviations surpasses the control limits. Hence, the CUSUM
chart is expected to be more sensitive to small and persisting shifts.
In an attempt to correct this effect, we may also adapt the cut-off with a heuristic
decision procedure proposed in Brian Hwarng (2004). This method relies on two
cuts-off, δ1

cut and δ2
cut, with δ1

cut < δ2
cut. A station is considered to be out-of-control

with this method if (a) δ̂(i, t) > δ2
cut or (b) if {δ̂(i, t), δ̂(i, t− 1), ..., δ̂(i, t− ncut)} >
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δ1
cut. Hence, (a) an alert is immediately triggered for medium to large shifts (that
are larger than δ2

cut). (b) The series can also be in alert when a small deviation
lasts ncut units of time, where ncut is a tunable parameter. The method is then
supposed to better identify small and persisting shifts but may take more time to
detect medium to large shifts, especially if they are oscillating. The main focus of
this heuristic decision procedure is thus to identify small jumps and drifts. Note
that δ1

cut could also be used as the warning limit of the method, i.e. a value above
which the series is considered to be in a warning state, yet not out-of-control.
The values of δ1

cut and δ2
cut can be adjusted using a searching algorithm similar to

those used to calibrate δcut. For a pre-specified value of ncut, δ1
cut and δ2

cut can
be adjusted alternately, one after the other, until a pre-defined value for the IC
average run length (ARL0) is reached at the desired accuracy 4. Here, we select
a value of ARL0 = 200 with an accuracy equal to ρ = 2. For ncut = 30, we
obtain δ1

cut = 0.21 and δ2
cut = 0.08 for the low-frequency monitoring. For the high-

frequency monitoring, we compute that δ1
cut = 0.83 and δ2

cut = 0.32, for ncut = 5.
Examples of such heuristic decision procedure are shown in Figure 4.10.

4.4.3 Adaptive CUSUM chart

The last procedure that we develop for giving alerts is based on an adaptation of
the CUSUM chart. In general, the CUSUM chart is particularly efficient to detect
small shifts since it agglomerates all deviations that are superior to a threshold,
previously denoted by k. As explained in Chapter 3, this parameter should be set
to k = δ/2 to allow an optimal detection of shifts of size δ by the chart. In practice
however, it is often difficult to correctly estimate δ. We use an optimal formula
(see (3.7.1)) valid for iid normal data for this purpose in Chapter 3. This formula is
thus not valid for the sunspot numbers, which are autocorrelated and non-normally
distributed. Moreover, the formula allows us to obtain a rough estimate of δ for
all stations on the period studied, while δ varies in each station and at every time-
step. Hence, having already developed efficient networks to estimate the size of
the shifts, we propose to use an adaptive CUSUM chart (Qiu, 2013, Section 4.5.2)
to give the alerts. This chart is similar to the classical CUSUM, except that the
threshold k is optimally adjusted for each new observation as a function of the
estimated shift size:

C+
j = max(0, C+

j−1 + µ̂2(i, t)− δ̂(i, t)/2)

C−j = min(0, C−j−1 + µ̂2(i, t) + δ̂(i, t)/2),
(4.4.1)

where j ≥ 1, C+
0 = C−0 = 0 and δ̂(i, t) is the shift size predicted by the networks

in station i at time t. This chart gives an alert if C+
j > L(i, t) or C−j < −L(i, t),

4Note that we can also fix a value for δ2cut and calibrate δ1cut until the pre-specified ARL0 is
achieved.
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Figure 4.10: (a) Upper panel: the shift sizes and shapes predicted by the neural networks
on data smoothed on 365 days from the station MT in Japan over 1992-2005. Lower panel:
the status (IC or OC) of the station. The cutoff values (±δ1cut and ±δ2cut) for ncut = 30
are represented by the horizontal thick lines. (b) Similar figure for data smoothed on 27
days from the station UC in Belgium over 1997-2000 (ncut = 5).

where L(i, t) denotes the control limit at time t in station i. Since δ̂(i, t) are
continuous, the previous scheme may be viewed as a combination of an infinity
of charts, with parameters L(i, t) and δ̂(i, t). To simplify its design, we assume
that L = L(1, 1)k(1, 1) = ... = L(i, t)k(i, t) = ... = L(N,T )k(N,T ), as proposed
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by Lorden (1971). The control limit L may then be adjusted using a bisection
searching method similar to Algorithm 1, to reach a pre-defined value of ARL0.
With this method, the alerts are given if |C+

j |, |C
−
j |> L/k(i, t), which is equal to

|C+
j |, |C

−
j |> 2L/δ̂(i, t).

4.4.4 Analysis of the shapes of deviations

The primary aim of developing a classifier is to examine and help identify the
root-causes of the deviations. As can be seen in previous figures, the shapes of
the deviations are complex to analyse but appear to correspond visually to what
we expect. The deviations around 2007 in FU and 1999 in UC are identified for
instance as jumps whereas the shifts around 1998 in MT and after 2014 in FU are
classified as (mostly) drifts.
The classification results may also be used to identify common deviating patterns
in all stations. Figure 4.11 shows the percentages of predicted shapes for each year.
Those percentages are calculated as the mean of the percentages of all stations in
the network. As can be seen, the jumps are more numerous than the other types of
deviations, both at a yearly and 27 days scales. The jumps are also more frequent
during solar minima. This effect is visible at both scales, but is however more pro-
nounced at a yearly scale. The low-frequency deviations contain least oscillations,
which appear to be often localised outside of solar minima. They include more
frequent trends that also mainly occur outside of minima. This may indicate that
the observers stay more or less constant, which is translated by oscillations of small
amplitudes, outside of minima. They can also experience trends related to changes
of instrument, observing method or observers whereas they experience more jumps
at minima. This may reflected the tendency of some observers to over-scrutinize
the Sun in such periods. The µ̂2(i, t) may also amplify the deviations at minima
since they are often computed on few values around these periods (µ̂2(i, t) are not
defined when Mt = 0, see (3.3.1)).
The high-frequency deviations contain few drifts that mainly occurred during solar
minima and slightly more oscillations that happen predominantly outside of min-
ima. This may reflect the fact that the observers make regular errors on a rather
short-term basis in one direction than another, resulting in small oscillations. Those
same observers make on the contrary substantial mistakes around solar minima,
which can last for several days and create rapid trends. Those results show that
it might be interesting to study the shapes of the deviations along time since they
appear to dependent strongly on the solar cycle.

We analyse in the same way the shapes of the deviations predicted by the support
vector machines (SVM) developed in Chapter 3. As for the networks, the most
common shapes are the jumps and those are more frequent around solar minima.
The oscillations however are almost never detected. When there is no jump, a drift
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a: Predicted shapes for low-frequency deviations
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b: Predicted shapes for high-frequency deviations

Figure 4.11: (a) Types of deviations that occurred in the long-term bias (µ̂2(i, t))
smoothed on a year as a function of time. The shapes of the deviations are expressed in
percentages for each year over 1981-2019. The percentages of the three types of deviations
(jumps, drifts and oscillating shifts) sum thus to 100%. They are computed as the mean
of the percentages obtained in all stations of the network. (b) Similar figure for the shapes
of the deviations that occurred in the bias smoothed on 27 days.

is then most of time identified, which gives less insights about the nature/causes
of the deviations. This may be explained by the fact that the CUSUM chart is not
much effective to detect oscillating shifts contrarily to NN-based control schemes,
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as will be seen later in Section 4.6. Note that the SVM procedures are trained
to detect the deviations when the CUSUM chart is in alert. To do this analysis
however, we apply the SVM on all data, deviating or not. The SVM predictions
can thus also be unreliable for non-deviating data.
Without further analyses, we cannot exclude the possibility that the networks have
somehow learned the underlying cycle of the data and make wrong associations be-
tween shapes and parts of the solar cycle. It seems however unlikely since the
training set is large, generated by simulation and contains windows of maximum
hundred observations. Moreover, we expect that different types of errors are made
at and outside of minima. With no evidence otherwise, we can thus assume that
the networks correctly predict the shape of the deviations. They may provide useful
information for analysing the causes of the shifts that should be further investi-
gated.

The automated prediction of the shapes of the deviations suffers however from
some limitations, which may be at least partially corrected in future works. Those
limitations are not restricted to the neural networks but also affect the predictions
of the SVM. First, the automated methods do not identify the shape of most of the
deviations that are longer than the window lengths. These lengths are limited here
to m = 100 and m = 50 for respectively the high and low frequency monitoring.
Similarly, they are restricted tom = 80 andm = 70 for SVM. To correct this effect,
the length of the windows may be extended at the expense of a larger number of
parameters in the methods. A network with a larger number of inputs could for
instance be developed but it will require regularization methods to avoid overfitting
the data and will take more time to be trained. Another possibility to analyse long
deviations is to smooth the bias at a even larger scale than one year. The bias at
365 or 27 days may also be smoothed by a non-parametric kernel function to remove
all deviations that live on shorter scales. The classifiers might then perform better
to predict the shape of the deviations that last longer than the window length since
they will not be “distracted” by short-lived shifts.
Second, the methods learned to classify the shapes of the deviations into three
different classes. Deviations of more than one class can however happen inside
the same window length. A jump and an oscillating shift can for instance happen
consecutively in a single input vector. The classes are also general and cover a
large variety of shapes but many types of shifts are still not included in them. For
example, polynomial shifts of order superior than 2 or exponential shifts are not
part of the training set. To solve these issues, the classifiers (either the neural
networks or the support vector machines) can be trained on more types of shifts
and even combinations of several types of shifts. The construction of the training
sets will be more complicated however and the design of the methods will also take
more time. For these reasons, we focus here on only three different shapes.
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4.5 Recurrent neural networks for monitoring
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Figure 4.12: Architecture of the recurrent neural networks designed for regression purpose.

As stated in the introduction of the section, there are two main types of neural
networks: feed-forward and recurrent (or feed-back) NNs. Previously, we designed
feed-forward networks for monitoring the unstandardised bias. Here however, we
focus on recurrent networks which are, by construction, better suited for time-series
analyses. We construct in the following simple recurrent networks, only composed
of fully-recurrent layers as inspired by the work of Pacella and Semeraro (2007).
More complex recurrent networks exist however in the literature such as the long-
short term memory (LSTM) (Hochreiter and Schmidhuber, 1997) or the gated
recurrent unit (GRU) (Cho et al., 2014) networks. They are composed of different
gates (layers) that control the flow of information in and out of a cell, which stores
the information that the networks have chosen to retain. Those networks were
initially introduced to fix the problem of the vanishing gradient that prevents the
modelling of long-term dependencies in simple recurrent networks. This problem
is solved in LSTM or GRU networks since the information contained in the cell
flows unchanged along time, except when it is accessed or modified by the gates.
A nice introduction to the recurrent networks, including the LSTM can be found
in the work of Schmidt (2019). Although the LSTM or GRU networks are allowed
to model longer autocorrelation structures than the simple recurrent networks, we
do not implement the former as the latter achieve sufficient performances for our
monitoring problem and are simpler to understand.
The simple recurrent networks that are constructed here are designed with the
same training sets as those previously described in Section 4.3. We first construct
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networks for the regression task. Those are represented in Figure 4.12. The inputs
of the networks have the same size as before: m = 100 and m = 50 respectively, for
the low and high-frequency monitoring. The networks are then composed of two
layers: the first one being a fully-recurrent layer of 10 neurons and the second one
a fully-connected layer of 10 neurons as well. The hyperbolic tangent activation
function, which is commonly used in recurrent networks, is also selected in the first
layer followed by the sigmoid for the second layer. Note that we could have cho-
sen the hyperbolic tangent activation function in both layers, without practically
changing the results. The outputs of the networks correspond then the predicted
sizes of the shifts. Those networks have 1231 and 731 trainable parameters respec-
tively, for the low and high frequency monitoring (against 4881 and 2881 for the
feed-forward regression networks). This architecture was selected, after few tests,
to achieve a precision (evaluated with the MSE) superior or equal to those previ-
ously obtained with the feed-forward regression networks. The recurrent networks
were then trained using the same settings (optimizer, initial learning rate, number
of epochs, loss function and batch size) as before. They achieve a MSE of respec-
tively 0.37 (MAPE of 45) and 0.43 (MAPE of 54) on the testing set for the low
and high frequency monitoring (versus a MSE of 0.41 and 0.44 for the feed-forward
networks). In total, the recurrent networks reach thus a similar precision than the
feed-forward networks with fewer parameters.
For the classification task, networks composed of a single fully-recurrent layer with
10 neurons and the hyperbolic tangent activation function were able to achieve
similar degrees of accuracy than the feed-forward classification networks. Those
recurrent networks have a total of 1143 and 643 parameters for respectively the low
and high frequency monitoring (against 4163 and 2163 for the feed-forward classi-
fication networks). After training, they reach an accuracy of respectively 95% and
91% on the testing set for the low and high frequency monitoring, which is thus
similar to the 96% and 90% obtained with the feed-forward networks.

We can thus obtain a similar accuracy with more parsimonious recurrent networks
than with feed-forward networks. This can be understood by the following argu-
mentation from Connor et al. (1992).
(a) A non-linear autoregressive (AR) model of order p writes as:

xt = h(xt−1, xt−2, ..., xt−p) + et, (4.5.1)

where the function h is unknown and smooth and et represents random noise
at time t that are independent of xt. The best prediction of xt is given by its
conditional mean given xt−1, ..., xt−p. It can be approximated by a feed-forward
neural network with one hidden layer:

x̂t = ĥ(xt−1, xt−2, ..., xt−p) =

I∑
i=1

Wi σ(

p∑
j=1

wijxt−j), (4.5.2)
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where σ is the activation function of the layer such as the sigmoid or the hyperbolic
tangent and I denotes the number of hidden neurons. The matrix w contains the
weights of the neurons. It is lower diagonal and allows thus no feedback. The
parameters w and W are both learned by the network on the training examples.
(b) In addition, a non-linear autoregressive and moving average (ARMA) model of
order p and q writes as:

xt = h(xt−1, xt−2, ..., xt−p, et−1, et−2, ..., et−q) + et. (4.5.3)

The best prediction of xt can now be approximated by a recurrent neural network:

x̂t = ĥ(xt−1, xt−2, ..., xt−p, êt−1, êt−2, ..., êt−q)

=

I∑
i=1

Wi σ(

p∑
j=1

wijxt−j +

q∑
j=1

w
′

ij(xt−j − x̂t−j)),
(4.5.4)

where the random noise are estimated by êt−j = xt−j − x̂t−j and the x̂t−j , for
j = 1, ..., q, are the results of the previous computations of the network. This
model can be viewed as a special case of a fully-recurrent network:

x̂t =

I∑
i=1

Wi σ(

n∑
j=1

w
′′

ijxt−j), (4.5.5)

where the matrix w
′′
is now complete and allows feed-back.

In argument (a), a feed-forward network with one hidden layer is associated to a
non linear AR model while in argument (b), a recurrent network approximates a
non linear ARMA model. As it is well known for those who studied time-series, an
ARMA modelling is a parsimonious alternative to autoregressive (AR) or moving
average (MA) models of high orders. A recurrent network have thus similar parsi-
monious advantages with respect to feed-forward networks as the ARMA models
have over AR models for some particular time-series.
In this work, the networks contain one or two hidden layers. They are also designed
to predict the shape and size of the deviations that affect the series, not to predict
the future values of the series. The analogy between our networks and non linear
AR and ARMA models may however be extended. Since our data have complex
autocorrelations that cannot be modelled by sparse AR or MA models, it explains
why the recurrent networks perform equally or even better than the feed-forward
networks with fewer parameters. The recurrent networks then offer a parsimonious
alternative to monitor the sunspot data.
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4.6 Comparison of the different monitoring meth-
ods

We previously developed feed-forward and recurrent neural networks for the moni-
toring. In this part, we compare their performances to those of the CUSVMmethod
developed in Chapter 3. We first study the detection power of the methods, i.e.
their capacity to give alerts when a deviation occurs in the data. To this end,
we compute the out-of-control average run length, denoted by ARL1, for various
sizes of the shifts with the different procedures. Then, in a second stage, we also
compare the performances of the methods to estimate the sizes of the shifts. The
first analysis aims thus at comparing the mechanisms that give alerts such as the
CUSUM chart, adaptive CUSUM chart, simple cut-off values of the networks or the
classifier with four classes. The second study focusses on the contrary on evaluating
the predictions of the regression networks and support vector regressor (SVR).
In the following, we describe simulations and results for monitoring the sunspot
data smoothed on a yearly scale. Similar conclusions can however be drawn with
data smoothed on 27 days.

4.6.1 Detection power

In this first subsection, we aim at comparing the detection power of the recurrent
and feed-forward networks as well as the CUSVM method. Those procedures have
however fundamental differences. To allow a fair comparison, we first thought of
monitoring the standardised bias, ε̂µ̂2

(i, t) defined in (3.4.3), with all methods since
the CUSVM was designed to work on standardised quantities in Chapter 3. Al-
though we observe that changing the scale of the deviations do not affect much
the performances of the networks when measured with a scale-independent metric
such as the MAPE, monitoring standardised bias ε̂µ̂2

(i, t) instead of unstandardised
bias µ̂2(i, t) diminishes their performances. We observe on average that the MAPE
values increase by around 20 when monitoring the ε̂µ̂2

(i, t)s. This is probably due
to the fact that the standardisation patterns (µ0(t) and σ0(t)) vary locally in time.
The standardisation process may then change the structure of the data. Since the
hyper-parameters of the networks (architectures, number of epochs, etc.) have not
be selected for monitoring standardised bias, the networks are thus less efficient for
that purpose.

Hence, we decide to monitor the standardised bias ε̂µ̂2(i, t) only with methods that
are based on the CUSUM chart. Those methods correspond to the feed-forward
network associated with the adaptive CUSUM (NN-ACUSUM), the recurrent net-
work with adaptive CUSUM (RNN-ACUSUM) and the CUSVM method. Hence,
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we retrain the previously described recurrent and feed-forward neural networks de-
signed for regression purpose on the standardised bias. All training parameters
remain identical except one: the variance of the normal distribution that is used
to simulate the shift sizes is set here to three instead of one, since the standardised
biases vary on a larger range. The feed-forward regression network combined with
simple cut-off values (NN-CUT), the recurrent regression network with cut-off val-
ues (RNN-CUT) and the feed-forward classifier with 4 classes (4CLF) will on the
contrary monitor the unstandardised bias, µ̂2(i, t) defined in (3.3.4), for which the
networks are best performing.
For this analysis, we also keep all values in the stations, i.e. we do not remove
the IC data that do not fall into one standard deviation around the cross-sectional
mean as we did in Chapter 3.
Note that we also apply the NN-ACUSUM and RNN-ACUSUM to the unstan-
dardised bias µ̂2(i, t) but they were slightly less effective in that case. Hence, we
only present results when those methods are applied to the standardised bias in
the following.

Design of the simulations

The methods are thus compared with the procedure explained below.
(1) First, all methods (except the classifier with four classes) are calibrated to reach
a desired rate of false positive at ARL0 = 200 with an accuracy equal to ρ = 2.
The block length used to calibrate the CUSUM chart and the length m of the input
vectors of the networks are set both to 100. (a) The control limit of the CUSVM
method is designed using Algorithm 1 with the moving block bootstrap procedure.
The target shift size is also selected at 1, which fixes the value of the allowance
constant to k = 0.5. (b) The cut-off values of the networks are also adjusted by
bisection searching as explained in Subsection 4.4.2 for the NN-CUT and RNN-
CUT methods. The control limits of the adaptive CUSUM are finally computed
following the procedure described in Subsection 4.4.3 for the NN-ACUSUM and
RNN-ACUSUM.
Using those procedures with B = 2000 runs, we obtain a control limit equal to
L = 33.2 for the CUSVM with δtgt = 1, L = 18.8 for the NN-ACUSUM, L = 16.8
for the RNN-ACUSUM, L = 0.106 for the NN-CUT and L = 0.096 for the RNN-
CUT.

(2) As stated in Chapter 3, the ARL1 represents the mean number of samples col-
lected from the appearance of a shift to the alert of a method. For same values of
IC average run length (ARL0), a method has thus better performances if its ARL1
values are lower. In a second stage, the ARL1 values are then computed. For each
run, an IC series of length 2000, denoted xic(t), is generated from the standardised
or unstandardised bias depending on the method, by the block bootstrap with a
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block length equal to 100. An artificial deviation of a certain shape and size is
then added on top of this series. (a) In the CUSVM method, the CUSUM chart is
applied directly to this series. The run length is computed as the number of values
before an alert is triggered by the chart. (b) With neural networks, the series is
assembled into moving windows of size m = 100 and fed to the networks which
predict the size of the deviations at each time. An additional procedure — either
the simple cut-off values or the adaptive CUSUM chart — is then used to trigger
the alert. The run length of the method is then saved. (c) The classifier with four
different classes (CLF4) is also applied to the series. The run length of the method
corresponds here to the number of observations that are classified as ‘in-control’,
before another type of deviation is detected.
The ARL1 is finally computed for all methods as the mean of the run lengths, over
B = 2000 runs.

For this study, three types of general deviations of size δ were simulated:

• jumps: x(t) = xic(t) + δ ;

• drifts: x(t) = xic(t) + δ
500 (t)a, where a is randomly selected in the range

[1.5, 2] ;

• oscillating shifts: x(t) = xic(t) + sin (ηπt)δ, where η is randomly selected in
the range [0.02, 0.2].

Results

The ARL1 values are shown in Figure 4.13 as a function of the shift sizes (δ).
They are computed on data smoothed on a year but similar results are obtained
on data smoothed on 27 days. Since the standardised and unstandardised biases
vary on different scales, we adapt the size of the shifts in both cases. The shift
sizes that are displayed in the figure correspond to those that are simulated for the
standardised bias whereas those shift sizes are 21 times lower for unstandardised
biases. This value of 21 was computed as the ratio between the standard deviation
of the standardised and unstandardised bias (std(ε̂µ̂2

(iIC , t))/std(µ̂2(iIC , t))), on
the IC stations. This means that an artificial deviation of size e.g. δ = 1 for the
CUSVM, NN-ACUSUM and RNN-ACUSUM corresponds to a shift size equal to
δ = 0.048 for the NN-CUT, RNN-CUT and 4CLF methods. The shift sizes are all
represented on the same x-axis in the figure however, for clarity purpose.

Based on Figure 4.13, we can make the following comments:

• In general, the different methods have similar performances for monitoring
drifts, which are the easiest deviations to detect. More differences appear
however for detecting jumps and oscillating shifts.
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a: ARL1 values for jumps.
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b: ARL1 values for drifts.
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c: ARL1 values for oscillating shifts.

Figure 4.13: Out-of-control average run lengths (ARL1) as a function of the shift size. The
ARL1 values are computed for different methods: feed-forward network with simple cuts-
off (NN-CUT), feed-forward network with adaptive CUSUM (NN-ACUSUM), recurrent
networks with simple cuts-off (RNN-CUT), recurrent network with adaptive CUSUM
(RNN-ACUSUM), CUSVM method and classifier with four classes (4CLF).

• The classifier (4CLF) works correctly with respect to the other methods but
has a higher rate of false positives. On average, a false positive occurs after
that around 85 observations are gathered instead of 200. This is expected
since we cannot control its rate of false positives. Note that we only design a
feed-forward classifier here but a recurrent classifier with four classes would
have given similar results.

• The three methods based on the CUSUM chart, namely the CUSVM, NN-
ACUSUM and RNN-ACUSUM have similar performances except for oscil-
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lating shifts, where the adaptive CUSUM charts are more effective than the
simple CUSUM. The NN-ACUSUM and RNN-ACUSUM also slightly out-
perform the CUSVM for detecting small and large jumps and drifts. This
can probably be explained by the fact that the CUSUM chart of the CUSVM
procedure is calibrated to be optimal to detect shift of size δtgt = 1. Outside
of this regime, the chart is thus less effective. It appears however to stay
competitive with the procedures based on adaptive CUSUMs over a large
range of values. There is thus some flexibility to choose the target shift size
in the CUSVM method.

• The NN-CUT, RNN-CUT and 4CLF often outperform the CUSVM, espe-
cially for identifying large shifts and oscillations. Among them, the recurrent
networks with simple cuts-off are slightly more effective to detect large devi-
ations and oscillations than the feed-forward networks. Few differences are
however visible between both types of networks, since they were designed to
reach similar performances measured in MAPE values. They identify thus
similar shift sizes.

For readability purpose, we do not show in the figure networks calibrated using
the heuristic decision procedure described in Section 4.4.2. In general, networks
combined with this heuristic procedure (based on δ1

cut and δ2
cut) perform slightly

better than networks associated to simple cuts-off values (δcut) for identifying small
jumps and drifts. They perform however worse with large shifts, as expected. This
heuristic procedure should however not be used for detecting oscillating shifts, since
the rapid oscillations prevent the data from staying nL consecutive values above
δ1
cut. Hence, only the upper cut-off value δ2

cut > δcut > δ1
cut is actually used for

triggering an alert, which diminishes the performances of the methods on oscilla-
tions.

To summarize, the methods based on the CUSUM chart (RNN-ACUSUM, NN-
ACUSUM, CUSVM) exhibit similar performances except for detecting oscillating
shifts, for which the adaptive CUSUM is slightly more effective than the CUSUM
chart. The four classes classifier, although simpler to design, does not allow us to
control the rate of false positives and has thus less practical interest than the other
proposed methods. Moreover, the networks combined with simple cut-off values
often outperform the other methods, including the CUSUM chart, especially to
detect oscillations and large deviations.

4.6.2 Estimation of the shift sizes

In this second subsection, we compare the predictions of the networks and support
vector machine to estimate the shift sizes. Those methods are compared with the
following procedure. The IC biases, µ̂2(iIC , t), are first partitioned in blocks of
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length equal to m = 100 with the MBB method described in Chapter 3. For each
run over 50000 examples, a block is randomly selected and an artificial deviation of
certain shape and size is added on top of it. The block is then passed through the
SVR and networks as an input vector, for estimation of the size of the shift. Here,
we randomly sample the shift sizes δ from a standardised normal distribution.
Three types of general deviations are then artificially constructed on top of the
selected blocks:

1. jumps: x(t) = xic(t) + δh(t), with h(t) =

{
1 if t > τ
0 otherwise. and τ in [0,m] ;

2. drifts with varying power-law functions: x(t) = xic(t) + δ
b (t)a, where a is

randomly selected in the range [1, 2] and b = 500 ;

3. oscillating shifts with different frequencies and phases: x(t) = xic(t)+δ sin (ηπt+ φ),
where η is randomly selected in the range [ π2m ,

2π
m ] and φ in [0, m

4 ], for
m = 100.

Note that those deviations have more complex shapes here than in the previous
subsection, since we aim at comparing the estimations of the shift sizes and not
the detection power of the methods. Same conclusions can however be drawn with
previous shapes.

As proposed in Laperre et al. (2020), we also compare the networks and SVR with
the predictions of a persisting model, which is used as a reference. This model
simply estimates the size of the shift on each block as the last value of the block:

δ̂pst = x(m). (4.6.1)

It is one of the simplest model that can be used to make predictions. Contrarily
to the persisting model, the SVR and networks make their predictions based on
the entire block (i.e. input vector) of length equal to m = 100. The blocks contain
thus more than one deviating observation. Hence, we also display results for the
persisting model where its predictions are based on a value in the middle (δ̂pst =

x(m/2)) and at the beginning of the blocks (δ̂pst = x(1)).

The performances of the methods evaluated using the MAPE criterion are displayed
in Table 4.1. As a remainder, this criterion is defined as:

MAPE =
1

M

M∑
j=1

∣∣∣∣∣ |δj |−|δ̂j ||δj |

∣∣∣∣∣× 100%,

where δ̂j is the shift size predicted by a method (which can be positive or negative)
and δj is the true size. As can be seen in the table, the most effective method
for detecting all types of deviations is the SVR, followed by the feed-forward and
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Method Jumps Drifts Oscillations Total
SVR 7.87 56.34 50.63 38.28
NN 20.59 65.15 75.86 53.87
RNN 19.05 69.76 80.14 56.32

Pst (δ̂pst = x(1)) 86.82 88.25 38.56 71.64
Pst (δ̂pst = x(m/2)) 49.18 96.80 38.90 61.63
Pst (δ̂pst = x(m)) 13.25 358.31 39.44 137

Table 4.1: Mean absolute percentage error (MAPE) values of the different methods
to estimate the shift sizes. Three methods, namely a support vector regressor
(SVR), a feed-forward regression network (NN) and a recurrent regresion network
(RNN) are here compared with the persisting model (Pst). The performances are
computed separately for the jumps, drifts and oscillating shifts as well as for all
deviations combined (Total).

recurrent networks. When only considering jumps, the most powerful method
remains the SVR. The persisting method also works particularly well for identifying
jumps if the last observations of the blocks are used. When other values are chosen
however, the persisting model is less effective. This is expected since the jumps
are simulated to appear at a random position inside the blocks. Contrarily to the
other procedures, the persisting model is not designed to identify shifts occurring
at random positions inside a specified windows.
The persisting model is on the contrary particularly ineffective to detect drifts.
This is especially true when the last observation of the block is used (δ̂pst = x(m)),
since the deviation has the time to grow. The last observations of the blocks take
thus high values. For oscillating shifts however, there is practically no differences
when making predictions on the first, last or middle observations, as the oscillations
vary over the same range and do not grow over time. For those oscillations, the
persisting model outperforms all other methods, including the SVR.
A slightly modified version of the MAPE criterion, which takes the sign of the
deviations into account, can be defined as

MAPE(2) =
1

M

M∑
j=1

∣∣∣∣∣ δj − δ̂jδj

∣∣∣∣∣× 100%.

When computed with this second version, all methods show similar performances
for identifying the oscillating shifts, with MAPE(2) values equal to 100. We thus
conclude that all methods have similar performances to identify oscillations and
are in general more effective to detect jumps and drifts.
To summarize, the SVR, which was retrained here to identify deviations in the
unstandardised bias µ̂2(i, t), appears to be the most effective predictive method.
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Note that the conclusions of this section also applied for monitoring the sunspot
numbers if the simulated shifts are representative of the actual deviations of the
data. Careful visual analyses confirm that this is indeed the case. Other methods
based on e.g. manual fits could also be used to analyse some deviations in details
and measure in quantitative terms how far the actual deviations of the data are from
the simulations. They were not applied here however, since those methods are not
automated and the data experience many deviations over time. In future works, the
simulations could also be improved by the following iterative procedure. A chosen
predictive method such as SVM or a network can be designed and trained on a set
of artificial deviations such as the one proposed in Section 4.3.2. The method can
then be applied to the actual data and the number of deviations detected in each
class can be evaluated. Based on these results, the simulations can be progressively
improved, to contain e.g. more deviations that are often present in the data. Other
types of artificial deviations (such as e.g. exponential shifts) can also be tested to
better correspond to the actual shifts. This procedure is however time consuming,
since it requires the design and training of the predictive method on different sets
of artificial deviations. It has thus not been implemented here.

4.7 Conclusion

In this section, we construct feed-forward and recurrent networks to predict the
size and shape of the deviations in the sunspot numbers. They are then associated
to simple cut-off values in the spirit of a Shewhart chart or to an adaptive CUSUM
chart, to trigger the alerts. As have been seen, those neural network (NNs) based
procedures have several advantages with respect to the CUSVM method that was
previously developed. We summarize here some solutions provided by the NN-
based control schemes to the four criticisms that were addressed to the CUSVM
method:

1. Numerous stages of the procedure: The networks combined with simple
cut-off values (NN-CUT and RNN-CUT) can monitor unstandardised bias.
They require thus less data processing than the CUSVM method since they
do not need an IC mean and variance. This saves time but also simplifies the
procedure with respect to the CUSVM, which requires thus fewer steps.

2. Problem of the parameters adjustment: When using NN combined
with the adaptive CUSUM chart (NN-ACUSUM and RNN-ACUSUM), the
allowance parameter is automatically adjusted to the predicted values of the
shift size, k = δ̂(i, t)/2. This is valuable since the allowance parameter is
difficult to choose and affects the performances of the CUSUM chart.

3. Non-optimality of the CUSUM for all shift sizes: This automatic ad-
justment of k to the predicted shift size with adaptive CUSUM charts allows
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a better detection of the smallest and largest shifts as well as oscillations with
respect to the CUSUM chart (of the CUSVM method).

4. “Exploding” CUSUM values: The NNs combined with simple cut-off
values (NN-CUT and RNN-CUT) do not cumulate the deviations of the data.
Hence, the predictions of the NNs are not “exploding”, like the CUSUM chart
statistics. There is thus no need to define upper values for those predictions
contrarily to the CUSVM method where |C+

j |, |C
−
j |≤ 2L. Additionally, the

cut-off values of the networks are expressed directly into the shift size units
and are thus easier to interpret than the control limits of the CUSUM or
adaptive CUSUM charts.

Moreover and this is probably their greatest asset, the NN-based control schemes
often outperform the CUSVM method on simulations, especially to detect large
or oscillating shifts. Depending on the monitoring target, different methods may
therefore be used. In the particular case of the sunspot numbers, detecting oscil-
lations or small jumps has a limited interest since those deviations are unlikely to
affect the long-term behaviour of the series. The NN-CUT or RNN-CUT may thus
be selected for monitoring the high-frequency (at 27 days) deviations since those
methods identify faster large jumps, which are more numerous at this scale than the
drifts. Although the NN-CUT or RNN-CUT may also be used for monitoring low-
frequency data at a yearly scale, the CUSVM method appears to be particularly
suited for this task since it slightly outperforms NN-based schemes for identifying
small drifts, which are expected to be at the basis of long-term deviations.
The NNs on the other hand work a bit like black boxes. Consequent analysis are
thus required to comprehend their working. Those networks are also complicated to
design since they require the construction of whole architectures, which takes time.
The CUSVM method may thus be preferred for some applications, in particular
those which require a deep understanding of the control scheme. An alternative
monitoring method, based on SVM procedures to estimate the size and shape of
the deviations and combined with simple cut-off values, could also be designed
in future works. This approach would combine the advantages of the NN-based
control schemes while being at the same time simpler to design. Considering the
previous simulation results, it is also expected to perform well with respect to the
proposed methods.

As concluding remark, the CUSVM and NN-based control schemes are flexible
methods, which can be applied to other data than the sunspot numbers with few
adjustments. Both methods would require a new model of the data in order to
properly work on another monitoring problem. The training set of the NNs as well
as those of the SVM procedures, which are generated by simulations, should also
be adjusted to other datasets.





Chapter 5

Application to photovoltaic production data with
focus on practical computational aspects

Often the packaging is as important as the product itself. The main functions of
a packaging are the identification of the product and its developer, its protection
(from dust or water but also from illegal reproductions) and its promotion. A good
packaging is also a matter a convenience since it allows an easy manipulation and
use of the product. Although obviously true for manufactured products in indus-
try, this is also valid for pieces of computer codes. Those are often organized into a
structure composed of different folders, which allows its easy installation and use: a
package. Nowadays, many journals asks the authors to provide data and computer
codes alongside their submission, for a better understanding and reproducibility
of the results. More and more attention is thus paid to the code supporting the
computational findings.
In this context, we develop a package written in the programming language Python,
which implements the methodology of Chapter 3 and allows its easy handling. Al-
though developed for analysing sunspot observations across a panel of observing
stations, this method can easily be adapted to other settings of data streams which
share a common principal signal. This is demonstrated in the following, for obser-
vations related to the photovoltaic production. The purposes of this work are thus
to present to package as well as to identify periods and patterns of potential data
acquisition or processing problems in another relevant application.
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5.1 Introduction

In this chapter, we apply the monitoring method developed in Chapter 3 to another
panel of data. This serves three main purposes, to illustrate the general applica-
bility of the methodology, provide a tutorial for the software, and demonstrate
its use in an example of practical importance. Although the CUSUM chart, the
support vector machines and the block bootstrap procedures (which are the main
ingredients of the method) are widely used in many applications, some features of
the sunspot data may have overshadowed the generic nature of our methodology
in Chapter 3. Here we introduce another example, the observation of photovoltaic
production across Belgium, and show which parts of the methodology extend di-
rectly to this situation and which parts require adaptation.
In doing so, we present the functions of our open-source software package developed
in the Python language (https://github.com/sophiano/cusvm), which contains the
implementation of all procedures that are described in Chapter 3. The name of
the package (cusvm) plays on the two main ingredients of the method, the CUSUM
chart and SVMs. While the method has been explained in detail in Chapter 3, we
thus focus here on its practical implementation.

As a result, we demonstrate how we can effectively monitor observations of the
photovoltaic energy production across distribution system operators (DSOs) in
Belgium. These data are collected on a quarter hourly time scale by a supplier of
DC/AC converters installed in photovoltaic systems pre-processed by an intermedi-
ate and published on the web portal of Elia, the Belgian high-voltage transmission
system operator. They serve in the process of load forecasting and allocation. As
will be seen in the following, those data exhibit similar properties as those of the
sunspot numbers, for which the monitoring method that we developed is partic-
ularly suited. Detecting deviations or inconsistencies in those data and analysing
their cause is thus an interesting practical task that will be the object of a future
collaboration with Elia.

This chapter is structured as follows. In Section 5.2, we briefly describe the content
of the package and how it can be installed. The data and their characteristic
features are then presented in Section 5.3. The CUSVM method is then calibrated
on those data in Section 5.4. Detailed explanations related to the functions that
should be applied for this purpose are also included in the section. The results are
then presented and discussed in Section 5.5.

https://github.com/sophiano/cusvm
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5.2 Setup

The package cusvm is written in Python 3. Before installing it, we strongly advice
to set up a new Python environment, with the latest version of Python installed.
Versions of Python superior than or equal to 3.6 also work. Such an environment
can be easily created using the platform Anaconda1, which is freely available for
the main operating systems (Linux, Windows and macOS). Then, the easiest way
to install cusvm is via the package manager pip2. The following command alone
allows the installation of the package (main functions and data) as well as all its
dependencies (i.e., the other packages that are called by cusvm and without which
the package cannot work). The complete list of those packages and their corre-
sponding versions can be found in the file setup.py, which contains all installation
requirements.

pip install git+ https :// github .com/ sophiano / cusvm

After installation, the main functions of the package can be imported (for direct
use) with the following command.

import cusvm as cusvm

The data that are automatically downloaded with the package can also be retrieved
as follows.

import pkg_resources as pkg
import pandas as pd
import numpy as np

data_path = pkg. resource_filename (pkg. Requirement . parse (" cusvm "), ’data ’)
df = pd. read_csv ( data_path + ’\ PVdaily .csv ’)
data = np. array (df )[: ,1:]
data = data. astype (’float ’)
data = data/96

import pickle

with open( data_path + ’/ time_daily ’, ’rb ’) as file:
my_depickler = pickle . Unpickler (file)
time = my_depickler .load ()

The energy production is recorded every 15 minutes. The file PVdaily.csv, which
may be opened with the library pandas, provides the daily sum of these produc-
tions. They are then converted into a numpy array, which allows the rapid ma-
nipulation of the data in the following. The library numpy is indeed specialised in
numeric calculations with multidimensional arrays of numbers. Since we want to

1Anaconda can be downloaded from https://www.anaconda.com/.
2Pip package manager can be installed from https://pip.pypa.io/en/stable/.

https://www.anaconda.com/
https://pip.pypa.io/en/stable/


150
Chapter 5. Application to photovoltaic production data with focus on practical

computational aspects

monitor the daily average production, the data in PVdaily.csv are thus divided
by 96 (24*4). We also provide the serialized file time_daily, which contains the
corresponding time of the measures, expressed in fraction of years. This file can be
opened with the library pickle.
Note that the package can also be downloaded from github in a zip file. To cor-
rectly function however, the user should manually install all dependencies of the
package and work with an appropriate version of Python. All paths (for importing
e.g. data, functions or pre-trained SVM models) should also be modified to match
those of the user.

A package is typically composed of several files: a licence (here it is the MIT), a
manifest that is used to import the data when installing the package, a setup which
allows an easy installation of the package and a README. As its name suggests,
the README is the first file that should be read. It contains a short description of
the package and its content. It also explains how to install the package and gives
further references. We provide here arXiv links to the main articles describing our
method.
Our package also contains several folders. The main functions are located in the
folder that has the same name as the package: cusvm. The folder data holds the
data files that are also imported when the package is installed. The scripts are
located inside the folder scripts whereas the documentation of the package is in-
cluded in the folder docs. Those folders are common in many packages. We provide
here another one, svm_models, which is particular to our monitoring method. It
contains the pre-trained SVM models, which are saved for reproducibility purpose.
Each folder also contains a README file that describes its content in more details.
After installation, the functions of the folder cusvm and the data are installed. The
other files are not imported but are available on github for helping the users to
work with the package. The scripts show for instance how the main functions could
be used and in which order to monitor panels of time series data. In the package,
they are applied, as one example, to the data included in the folder of the same
name. Jupyter notebooks are also provided inside docs. They contain basically
the same code as the scripts but with many more explanations. Note that those
notebooks can be opened online3, without requiring a local deployment of Python.

In the following, we assume that the package is properly installed and operational.
We focus on the description and application of its main functions (located inside
the folder cusvm). Those are distributed among different files for clarity purpose.
The file bb_methods.py contains all functions that are related to the block boot-
strap (BB) procedures. Although not directly used thereafter, many functions
inside the package rely on those methods (i.e. the file is internally called many

3Jupyter notebooks can be read online, at the following link for instance: https://jupyter.
org/try.

https://jupyter.org/try
https://jupyter.org/try
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times in the package). The file preprocessing.py contains a set of functions that
can be used to pre-process the data. It is composed of e.g. functions to smooth
or rescale the data with respect to a reference. It also contains methods to au-
tomatically select a pool of IC series from a panel and to standardise the data
by K nearest neighbours regression method. autocorrelations.py is principally
used to select an appropriate value for the block length of the BB procedures. It
also contains functions to analyse the autocorrelation of series prone to missing
values. cusum_design_bb.py is composed of different algorithms that can be used
to calibrate and evaluate the performances of the CUSUM chart designed by BB.
Similarly, the file svm_training.py holds functions to train the support vector
machine methods. Finally, alerts.py should be called to actually apply the mon-
itoring procedure to the data. It also includes functions to display the main results
of the monitoring.

All those functions have thus one or several arguments. Those can be manda-
tory, meaning that the functions return an error if those arguments are not passed
through the functions when they are called, or optional. The optional arguments
are set to a default value in the definition of the functions and are used with their
default value if not specified otherwise. The complete list of arguments can be
found at the beginning of each function. This documentation also contains few ex-
planations about the aim of the function, its implementation, the default value of
its arguments and their type (optional or mandatory). In the following, we review
the main arguments of the functions but seldom all of them. We thus strongly
encourage the user to consult this documentation for more information.

5.3 Data

In this section, we first present the data that will be analysed in the remaining part
of the chapter. Those are the photovoltaic energy production in Belgium. Then,
we introduce a model for these data and isolate a relevant variable that contains
potential deviations and will be monitored in the following.

5.3.1 Presentation of the data

The data related to the photovoltaic energy production in Belgium are provided
by Elia4. Elia is the Belgian transmission system operator for high-voltage power.
It manages the transport of electricity from generators to distribution system op-
erators (DSO), working with medium and low voltage. Its primary activities are
to maintain and develop the high-voltage network infrastructures and manage the

4The data are available at the following link: https://www.elia.be/fr.

https://www.elia.be/fr
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power system. Elia is thus also responsible for keeping the balance between power
production and consumption or for handling the importation and exportation of
electricity toward other countries. To better manage the system, it needs to take
into account the photovoltaic energy production as well. Elia thus retrieves those
data from different system operators across the country and make predictions to
forecast the upcoming amount of energy produced. Those allows Elia to e.g. plan
ahead shortfall or surplus of energy and take appropriate measures.
The photovoltaic energy production data suffer however from inconsistencies or er-
rors related to e.g. data transmission issues. In the remaining part of the chapter,
we will therefore apply our monitoring method to those data. Our main objective
is to detect past deviations and try to find their root-causes, with aim to prevent
the occurrence of similar inconsistencies in the future.

In the following, the period under study extends from January 1, 2015 till January
27, 2021. In this period, both the data that are sampled every 15 minutes and
their average daily values are analysed.
The data correspond to the load factors, which are defined as the ratio between the
real time photovoltaic energy production measures divided by the related installed
capacity, expressed in percentages. They correspond to the upstream photovoltaic
energy production (before consumption) in the different installations. Those are
built for professional or domestic uses and may thus vary in size. In total, the data
come from around 70000 of such installations, which are spread across the country.
They are provided by different DSOs, who gather the production of a particular
region in Belgium. The data form thus a panel of observations, whose composition
and main characteristics are summarized in Table 5.1.

Photovoltaic energy production

To better understand the data and potential causes of anomaly, we review here
some basics about photovoltaic energy production. A typical photovoltaic instal-
lation contains different components, whose main elements are the solar panels.
Those are in turn composed of photovoltaic cells that convert the solar energy
received into electrical energy using the photovoltaic effect. Afterwards, an in-
verter transforms the direct current (DC) produced by the photovoltaic cells into
alternating current (AC). The current generated is then either directly used in the
local/domestic network (if any) or redirected into the power grid. It may also be
stored into batteries for future needs. Nowadays, most of the inverters (for example
those produced by the company SMA5) have integrated devices that allow them to
record the energy produced and to communicate it to the network or/and to the
holder of the installation via Internet. We are working here with such data, which

5Solar Technology AG (SMA) is a German producer and manufacturer of solar inverters, see
https://en.wikipedia.org/wiki/SMA_Solar_Technology.

https://en.wikipedia.org/wiki/SMA_Solar_Technology
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Name Location level
AIEG Andenne/Gesves 102
AIESH South of Hainaut 97

Gaselwest Courtrai/Ypres 109
IMEA Antwerp (Prov.) 100
IVEG Antwerp (Prov.) 100
IVEKA Antwerp (Prov.) 99
Imewo East and West Flanders 105

Infrax West East and West Flanders 109
Inter-Energa Limburg (Prov.) 101
Intergem East Flanders and Bever 100
Iverlek Flemish Brabant and Antwerp 100

Ores Brabant Wallon Walloon Brabant 101
Ores Est Eupen 111

Ores Hainaut Hainaut (Prov.) 103
Ores Luxembourg Luxembourg (Prov.) 108
Ores Mouscron Mouscron 110
Ores Namur Namur 101
Ores Verviers Verviers 107

PBE Walloon and Flemish Brabants 100
Regie de Wavre Waver 102

Resa Liege 103
Sibelga Brussels 100
Sibelgas Brussels 100

Table 5.1: Main characteristics of the DSOs. The table contains the name of the
operators and the regions where the data come from. The last column also repre-
sents the level of the regions on the years 2016-2020 (the year 2015 was excluded
from the computation since it contains unusual deviations). It corresponds to a
mean scaling-factor (obtained for daily values) expressed in percentages and repre-
sents intrinsic differences between the regions due to e.g. altitude, micro-climate,
pollution level etc. Values above hundred indicate that the region produces more
energy than the median of the network (we show here the mean value of χ defined
in (5.3.1), see below).

may thus be affected by Internet disconnections and power cuts.

As stated before, the photovoltaic cells are the ones that produce the energy. The
amount of power produced is therefore highly dependent on the solar radiations
that they receive and is affected by several factors. The atmosphere is responsible
for sending back around 30% of the solar energy into space. It also absorbs and
scatters part of the radiations in any direction. What is remaining reaches then the
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ground. The thickness and, to a lesser extent, the composition of the atmosphere
impact thus the quantity of energy that is received by the photovoltaic panels. This
explains why the production is weaker in the morning and afternoon than at mid-
day, when the sun-rays go through a shorter distance in the atmosphere to reach
the ground. For the same reason, the photovoltaic production also exhibits a yearly
cycle (see Figure 5.2), since the length of the days and the elevation of the Sun
on the horizon depend on the time of the year (e.g. the production is thus weaker
in winters than summers). Moreover, although it may seem counter-intuitive, the
energy produced diminishes when the temperature increases (Dubey et al., 2013).
The latitude and the altitude of the installations can thus influence the production
as well as the inclination and orientation of the panels. Finally, the energy received
is also influenced by obstacles that can mask the Sun such as clouds, topographies
(mountains, etc) or even neighbouring barriers such as buildings or trees.
Among those phenomenon, the altitude and local weather conditions are expected
to have the strongest impacts on the Belgian production. Those effects should be
minor however, since the size of the country is small.
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Figure 5.1: Histograms of the photovoltaic energy production for all operators/regions in
the period studied. (a) The histogram is represented in (a) for daily values and in (b) for
data obtained each 15 minutes.

Properties of the data

The photovoltaic energy production data have therefore complex features that are
outlined below.

Non-
Normality

As can be seen in Figure 5.1, the data are non-normally distributed. The
histogram of the daily values looks similar to those of the number of sunspot
groups (Ng) obtained in Figure 2.4, which has been modelled by a mixture of
a negative binomial and a Poisson distributions. The data obtained each 15
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minutes resemble on the other hand more to the number of sunspots (Ns),
approximated by a mixture of two negative binomials in Section 2.5. They
also experience a large excess of zeros due to the nights, where the solar energy
production drops to zero. Note that, this shows once again that zero-altered
models are common in many applications.

Missing
values

There are no missing values in the dataset. However, it might be interesting
from a practical point of view to treat the zeros as missing values. Actual
missing values can also happen in practice, for instance if the inverter which
transmits the amount of production of a particular installation to the system
operator is dysfunctional. We do not know how the DSO encode those errors
(we only have the data for the entire region managed by each DSO) but it
could register them either as missing values (which makes more sense) or as
zeros.

Correlations The energy productions are correlated across the panel, since the country is
small. The solar energy received is therefore more or less similar in the dif-
ferent regions. The data are also correlated along the time since the amount
of solar radiations that hits the ground depends on the incidence angle of
the sun-rays. It thus progressively increases during the day till a maximum
(which depends on the period of the year) before descending to zero at night.
Moreover, this angle also changes throughout the year. Hence, the series are
autocorrelated, in particular those that contain values each 15 minutes. The
daily values also experience autocorrelations but until lower lags. Addition-
ally, the cloud coverage is also a source of correlation across the panel and
along time.

Multi-scale
deviations

Different kinds of deviations may affect the data. Meteorological events
(storms, etc) may perturb the production in localized regions over brief peri-
ods. They may also have long-term effects if they degrade several installations
in a region. Short power or internet blackouts can disrupt the transmissions
of the inverters to the DSOs. Those can last from few minutes to few days.
Moreover, longer term variations can also appear in a region if the actual ca-
pacity of the installations deteriorates over time without being upgraded on a
regular basis or if the monitored capacity is poorly determined/ transmitted
to the DSOs. The variations in the data may thus be caused either by the
weather conditions or by dysfunctions in the installation or in the communi-
cation with the network. While the former may be compared to local weather
observations and ignored, the latter may hopefully be corrected to provide a
better network management. In general however, the data are expected to
have a rather high signal-to-noise ratio.

As a result, the photovoltaic production data have similar features (i.e. the non-
normality, the autocorrelation and the multi-scale deviations) as the sunspot num-
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bers. The method developed in Chapter 3 is therefore particularly adapted to
monitor those data.

5.3.2 Model

2016.00 2016.33 2016.66 2016.98 2017.31 2017.64 2017.97
year

0

5

10

15

20

25

P(
i,t

)

IVEKA

Figure 5.2: Photovoltaic energy production recorded by the DSO IVEKA over the years
2016-2017. As can be seen, the variations in the data are larger when the production is
higher, which suggests a multiplicative model.

In the following, we denote by t, t ∈ 1, ..., T , the time of the measures. Those
corresponds either to the day or to the quarter of an hour of the records. We
also represent the index of the operators/regions by i, i ∈ 1, ..., N = 23, to keep
consistency with the notations introduced before.
As seen previously, the data, denoted by P (i, t), may be decomposed into different
components:

P (i, t) = η(i, t) χ(i, t) c(t). (5.3.1)

In (5.3.1), c(t) represents a common signal between all regions. This quantity mod-
els the overall amount of solar radiations that reaches the ground in Belgium. It
also accounts for weather conditions that affect the whole country. This quantity
depends thus on the time, since the solar energy received varies with the hour of
the day and the period of the year. It is also latent since the actual amount of
energy reaching the ground depends on complex phenomena in the Sun and in the
atmosphere that cannot be observed. In the following, we will thus estimate the
mean of c(t) using the panel and employ this mean as a proxy for c(t), as we did
with s(t) in Chapter 2.
The variable η(i, t) of (5.3.1) accounts on the contrary for the regional variations
in the data. It thus corresponds to the different amount of solar radiations that
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are received in the regions due to e.g. localized weather conditions or to local
malfunctions. This variable will therefore be monitored in the following to detect
potential defects in the network.
Finally, another component denoted by χ(i, t) is also included in the model, to
represent the level of the regions. Those χ(i, t)s are piece-wise constant scaling
factors that typically represent the altitude, composition of the atmosphere (e.g.
the level of pollution) and micro-climate of the different areas. Their piece-wise
constant nature echoes some steps in the processing of the load factors (for which
we have not been granted full access yet), which are abruptly updated at regular
intervals. These factors are allowed to change with time as the climate or pollution
may change over the years but vary at a slower peace than the other variables.
Hence, they are computed on a specified period that is larger than the sampling
period of the data and take thus fewer values in the entire period studied (e.g.
2015-2020). As few disparities of altitude and climate are observed in Belgium,
differences of only few percent (10-15%) are expected between the regions. We also
assume that the mean of the χ(i, t)s over the panel is equal to one.

The model in (5.3.1) is written in a multiplicative framework, such as those of
the sunspot numbers. Those models are common in the literature to account for
variations that depend on the values of the data (i.e. to model situations where
large variations are expected when the data take high values). Such variations are
visible here in Figure 5.2. Physically, a multiplicative model also seems appropriate
since the solar energy received at the ground is the fraction of the total energy
that passes through the atmosphere without being absorbed. The variable c(t) is
therefore multiplied to the other terms of the model. Similarly, since the factors
χ(i, t) model the composition of the atmosphere and its degree of transparency
above a defined area, they can also be multiplied to the error term, η(i, t).
Note that additive models are also frequent in practice and can be treated by our
monitoring method as well. In this case, the preprocessing of the data, explained
in the next subsection, should simply be modified to correspond to an additive
instead of multiplicative model.
In the following, we assume that the random variables c and η are continuous and
that χ, c, and η are also jointly independent.

5.3.3 Preprocessing

To monitor η, we need to isolate it from the other terms of the model in (5.3.1). To
this end, we take some inspiration from the procedure that was used to estimate
the long-term bias of the sunspot numbers in Section 3.3. Note that the model
of (5.3.1) is valid for daily values as well as for data collected each 15 minutes.
Both will be analysed in the following but we only present the preprocessing and
the calibration of the method on daily values, for clarity purpose. Results will be
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shown however for both types of data.

(1) We first rescale the data to roughly compensate for the different levels of the
regions: Presc(i, t) = P (i,t)

k′(i,t) , where k′(i, t) are piece-wise constant scaling fac-
tors computed using the procedure described in Section 2.4. This can be done
by loading the file preprocessing.py from the package cusvm and calling the
function rescaling(). This function has two mandatory arguments: data and
period_rescaling. It computes the piece-wise constant scaling factors as the
slope of the ordinary least-squares regression between each series and the median
of the data. Those factors are calculated on a pre-specified period, which is set
here to one year: period_rescaling=365. This value seems appropriate since
the degree of pollution or the micro-climate are not expected to change much over
time. The data are then divided by these factors in the function, for the actual
rescaling. The function finally returns two quantities: the rescaled data (saved into
the variable data_rescaled) and their corresponding scaling factors (saved into
k_factors). Functions in Python can thus return several objects.
from cusvm import preprocessing as pre

data_rescaled , k_factors = pre. rescaling (data=data , period_rescaling =365)

Note that the arguments of a function can be passed by position or by keyword
in Python. Both types of arguments can also be mixed in the same function,
with keyword following positional arguments. The following codes are thus all
equivalent:
data_rescaled , k_factors = pre. rescaling (data=data , period_rescaling =365)
data_rescaled , k_factors = pre. rescaling (data , 365)
data_rescaled , k_factors = pre. rescaling (data , period_rescaling =365)

Then, we estimate ĉ(t), a proxy for the common component, as the point-wise
median of the rescaled series along time:

ĉ(t) = med
1≤i≤N

Presc(i, t). (5.3.2)

To do so, we apply the function median() to the rescaled data.
med = pre. median ( data_rescaled )

(2) Now that we estimated c, we can remove it from the (raw) data:

η̂(i, t)χ̂(i, t) =
P (i, t)

ĉ(t)
. (5.3.3)

To this end, we use the function remove_signal(). As most of the functions in the
package, its first argument is the data. The second argument of the function is set
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here to model = ’multiplicative’. With this setting, the common signal is di-
vided from the data whereas it would have been subtracted if model=’additive’.
This function can thus be used to remove the common component of the series in
additive or multiplicative models. The third argument of the function also allows
the specification of this common signal (also called “reference” of the panel). By
default, it is computed as the median of the data. Here, this reference is specified
as the median of the rescaled data instead, ref=med.
ratio = pre. remove_signal (data , model =’multiplicative ’, ref=med)

Note that, as observed before with the bias of the sunspot numbers, dividing the
data by c produces high values when the signal is minimal. Errors are thus enlarged
around minima with regard to other parts of the cycle. A similar effect would also
occur at maxima if c was subtracted from the data (when model=’additive’).

(3) We finally obtain an estimation (denoted by µη) of the mean of the localized
variations η, by rescaling once again the data:

µ̂η(i, t) =
P (i, t)

ĉ(t)χ̂(i, t)
. (5.3.4)

In practice, we thus apply once more time the function rescaling() on the previ-
ous ratio to eliminate the level (χ) of the data.
mu_eta , chi_factors = pre. rescaling (ratio , period_rescaling =365)

This function returns two quantities: the rescaled ratios µ̂η(i, t) (saved into the vari-
able mu_eta) and their corresponding scaling factors χ̂(i, t) (saved into chi_factors),
which allows us to study the levels of the regions as well.

The µ̂η(i, t), the initial data and all intermediate quantities are represented in
histograms and as a function of time in Appendix 5.7.1.
Note that we could have rescaled the data before removing the common signal. We
do the opposite here to better study the levels of the series, whose mean values are
displayed in Table 5.1. Those levels differ indeed more between the regions after
removing the common signal — which varies over higher orders of magnitude than
the levels — than before.
Other functions that could be used for the preprocessing of the data are also defined
in preprocessing.py. remove_level() may be used to remove an additive level
to the series and smoothing() may be applied to smooth the data by a moving
average filter of a specified window length. Those functions were both used in
Section 3.3.3 to estimate the long-term bias of the sunspot numbers. They are
not used here however, since the localised variations, η(i, t), can be isolated from
the model of (5.3.1) without applying those functions. In general, each monitoring
problem requires thus a particular preprocessing, which depends on the nature and
model of the data.
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5.4 CUSVM method

Previously, we present the main characteristics of the photovoltaic energy produc-
tion data and propose a model for them. In the following, we will then apply the
non-parametric monitoring scheme developed in Chapter 3 to those data. Although
the methods will not be modified, contrarily to the model, their parameters will be
adjusted to the production data.

5.4.1 Phase I: Estimation of IC longitudinal parameters

In this subsection, we first select a subset of in-control (IC) series from the panel.
We then estimate the mean and variance on those IC data along time, following
the methods described in Section 3.4.1. The data from the whole panel are later
standardised by these parameters as proposed in Section 3.4.1.

The subset of stable series is first selected using the function pool_clustering()
from the file preprocessing.py. In this function, a robust version of the MSE
defined in (3.4.1), is computed for each series. The series are then clustered in two
groups based on their MSE value and the subset with the lowest values is selected as
the IC group. The first argument of the function is the only one which is mandatory.
It corresponds to the data to be clustered. The second argument of the function
is optional and set here to method = ’kmeans’ (the default value). With this
method, the series are grouped using the k-means algorithm (see Appendix 6.9.1).
The other clustering methods that are defined in the function are: agg which stands
for agglomerative clustering, ms for mean-shift, dbscan for DBSCAN and gmm for
the expectation-maximization clustering using Gaussian mixture models. Those
methods are also described in Appendix 6.9.1. Two other values are also allowed
for the argument method: leftmed chooses all IC series whose MSE is inferior to
the median of the MSE and fix selects a pre-specified number of series (argument
nIC): those whose MSE values are the lowest among the panel. Since the groups can
be unbalanced, the function is designed to iterate the clustering until the smallest
group contains at least 25% of the total number of series: nIC_inf=0.25.
pool = pre. pool_clustering (mu_eta , method =’kmeans ’, nIC_inf =0 .2 5)

# names_IC = [ names [i] for i in range ( n_series ) if i in pool]
#[’ IVEKA ’, ’Intergem ’, ’Iverlek ’, ’Ores Brabant wallon ’,
# ’Ores Hainaut ’, ’PBE ’, ’Regie de Wavre ’, ’Sibelga ’, ’Sibelgas ’]

With the previous code, we obtain a pool of nine series (among the 23 energy op-
erators in the panel). It contains the data from IVEKA, Intergem, Iverlek, Ores
Brabant wallon, Ores Hainaut, PBE, Regie de Wavre, Sibelga and Sibelgas. The
Flemish and Walloon Brabant together with Brussels appear thus to produce a
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similar amount of energy than the median of the network. This can be understood
by the fact that Belgium is more extended in longitude than in latitude. Hence, the
atmospheric perturbations take more time to pass through the country from West
to East (or reversely) than to navigate from South to North (and conversely). The
regions located the farthest from the centre are thus expected to differ particularly
much from a reference production level. They appear to be indeed excluded from
the pool by the clustering method, contrarily to the regions in the centre of the
country.
As one of our collaborator suspects, this may indicate that there are two compo-
nents in the signal, which are related to the West and East regions. This inhomo-
geneity of the panel is specific to the photovoltaic production and does not appear
in the sunspot numbers. Hence, it will not be treated in the following. One poten-
tial solution to take these differences into account however, would be to monitor
separately the East and West regions. Another possibility would be to model the
localised variations η(i, t) in the East with an autoregressive model based on the
values of η(i, t) in the West (or conversely depending on the wind direction).
Note that since the data have a high signal-to-noise ratio, we do not remove the out-
liers in the IC series. This could have be done with the function outliers_removal()
from the file preprocessing.py. For more information, we refer to the documen-
tation at the beginning of the function.

a: Mean as function of K b: Std as function of K

Figure 5.3: Mean and standard deviation (std) of the standardised data as a function of
K.

Then, we compute the empirical mean and variance (denoted µ̂0(t) and σ̂0(t)) on
the IC pool using K-NN regression method, which is just a box car smoothing across
the panel and time. An appropriate value for the number of nearest neighbours
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K is first selected using the function choice_K() from the file preprocessing.py.
The two first arguments of the function are mandatory and correspond to the
standardised data in the whole panel and in the IC pool only. There are thus
set here to µ̂η(i, t) and µ̂η(iIC , t). This function selects K to obtain the “best”
standardisation of the complete panel, in the sense that its empirical mean becomes
close to zero and its empirical variance close to one. It works as follows. For
different values of K in the range [start, stop] with a certain step, the function
standardises the data by the IC mean and variance. The mean and the standard
deviation (std) of the standardised data are then computed. Usually, the mean
and std exhibit a similar behaviour: the mean comes closer to zero and the std
draws near one with increasing values of K, as can be seen in Figure 5.3. K is thus
finally selected as the knee (Satopaa et al., 2011) of the std curve.
K = pre. choice_K (mu_eta , mu_etaIC , start =50, stop=2000, step=50)

#K = 400

With this procedure, we select K = 400.

Finally, the data from the whole panel (IC and OC) are standardised by the IC
mean and variance:

ε̂η(i, t) =
µ̂η(i, t)− µ̂0(t)

σ̂0(t)
. (5.4.1)

This can be done using the function standardisation(), which has only three
mandatory arguments. The two first arguments of the function are the standardised
data in the whole panel and in the IC pool only. They are set here to µ̂η(i, t) and
µ̂η(iIC , t) whereas the third argument is K.

data_stn , dataIC_stn = pre. standardisation (mu_eta , mu_etaIC , K=400)

This function returns the standardised data in the panel and in the pool. Note
that here the standardised IC series are the same in dataIC_stn and in data_stn,
but this is not always the case. If we remove the outliers of the IC pool as done in
Section 3.4.1, where we remove the IC observations that do not fall into one stan-
dard deviation around the cross-sectional mean, then those two quantities would
be different (i.e. data_stn would still contain the deviations of the pool while
dataIC_stn would not).

5.4.2 Phase II: Monitoring

Having selected an IC pool and standardised the data by the IC mean and vari-
ance, we can now move on to the second phase of the method. In this stage, we
calibrate the CUSUM chart on the data using the block bootstrap (BB) procedure,
as described in Section 3.4.2.
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Figure 5.4: MSE of the autocorrelation of the IC series as a function of the block length.

To this end, we first select an appropriate value for the block length. This length
depends on the autocorrelation of the data and can be automatically selected using
the function block_length_choice() from the file autocorrelations.py. This
function is based on Algorithm 3, which chooses the block length as the knee of
the MSE of the autocorrelation curve. Hence, it selects the block length as the
smallest value which represents the main part of the autocorrelation of the series.
The first argument of the function is mandatory and corresponds thus to the stan-
dardised IC data. It is set here to ε̂η(iIC , t). The three following arguments define
the block length values that are tested by the method. Those are simulated in the
range [bbl_start, bbl_stop] with a certain step, bbl_step. Another important
argument of the function is BB_method, which allows the user to choose a par-
ticular BB procedure among those presented in Section 3.2.4. Here, the moving
block bootstrap is chosen by setting BB_method = ’MBB’. The other BB methods
that are defined in the function are: CBB which stands for circular BB and NBB for
non-overlapping BB. The block length of the matched BB can also be selected with
the option NBB, since it is implemented with non-overlapping blocks in the package.
Note that the stationary block bootstrap, which has a variable block length, is not
defined in the function and in the whole package.

from cusvm import autocorrelations as acf

bb_length = acf. block_length_choice ( dataIC_stn , bbl_start =1,
bbl_stop =50, bbl_step =1, BB_method =’MBB ’)

With this method, we select a block length equal to 8. As can be seen in Figure 5.4,
this value corresponds well to the knee of the curve, i.e. the point where the curve
changes, specifically from a high slope to a low slope.
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Then, we select a target value for the magnitude of the shifts, also generically called
“shift size”, using the function shift_size() from the file cusum_design_bb.py.
This function is based on Algorithm 5, which estimates iteratively the shift sizes of
the OC series with the formula defined in (3.7.1). The target size is then selected
as a specified quantile of the shift sizes distribution. The function contains several
arguments, the two first of which are mandatory. The first parameter corresponds
to the standardised data from the whole panel whereas the second is the index of
IC series in the panel. The quantile of the shift sizes distribution is specified here
at 0.4 (qt=0.4). While the default value is set to 0.5 to maximise the detection of
both small and large deviations, we lower a bit the value here since unusually high
deviations occur in some series during 2015. Otherwise, with the default value
qt=0.5, we would obtain a target shift size close to 3.2, which is improper for
detecting the smallest shifts of the data. An initial value for the desired average
run length is also defined at 200 (ARL0_threshold=200), which will be the standard
for this chapter. This function, as all functions that are presented in the following,
also contains the argument BB_method, which allows the selection of a particular
BB procedure. It takes values among: MBB which stands for moving BB, NBB for
non-overlapping BB, CBB for circular BB and MABB for matched BB. As explained
previously in Chapter 3, best performances are obtained when the chart is designed
with the moving block bootstrap procedure. The moving BB is thus specified here
and in the following with this command: BB_method=’MBB’ (it is also the default
value in the function). Moreover, we pass the block length previously chosen to
the function with: block_length=bb_length. Both arguments (BB_method and
block_length) are thus recurrent and will be set to the same values in the following
functions. Finally, the initial value for the shift size is chosen at two: delta=2.

from cusvm import cusum_design_bb as chart

delta_target = chart . shift_size (data_stn , pool ,
ARL0 _threshold =200, delta =2, qt=0 .4 ,

block_length = bb_length )[1]

# delta_target = 2.24

The function returns a value that is close to 2. Although approximate, this value
gives us a rough estimation of the magnitude of typical shifts in the data. It will
be used in the following to calibrate the chart, for all types of shifts (jumps, drifts
and oscillations).

Having selected the block length and the target shift size, the control limits of
the CUSUM chart can finally be adjusted on the IC series by bisection searching
using Algorithm 1. To this end, we call the function limit_CUSUM() from the
file cusum_design_bb.py. This function has several arguments, all listed at the
beginning of the function. Its first argument is the only one that is mandatory
and corresponds to the IC standardised data. It is set here to ε̂η(iIC , t). We
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also specified the target shift size to the value previously found: delta=2. Since
the distribution of ε̂η(iIC , t) exhibits only a weak asymmetry (see Figure 5.9), the
allowance parameter is let to its default value in the function: delta/2. Moreover,
we set BB_method=’MBB’, ARL0_threshold=200 and block_length=bb_length,
as previously explained. With these choices, the control limit is calibrated to reach
a value of ARL0 = 200 with an accuracy of ρ = 2 over B = 4000 runs. The
accuracy (ρ) and the number of runs (B), which are not specified in the call of the
function, are thus used with their default value (i.e. ρ = 2 and B = 4000). The
control limit is then searched in the interval [L_plus, L_minus], where we define
L_plus=20 and L_minus=0.

control_limit = chart . limit_CUSUM ( dataIC_stn , delta = delta_target ,
ARL0 _threshold =200, L_plus =20, L_minus =0, block_length =bb_length ,

BB_method =’MBB ’, missing_values =’omit ’)

# control_limit = 3.26

The last argument of the function that we have not yet mentioned is missing_values
which is, as its name suggests, related to the missing data. It can take three values:
omit, which suppresses blocks of data containing one or several missing values, fill
which fills up the missing data with the mean of each series and reset. When spec-
ified to reset, the values of the CUSUM chart statistics are propagated through
the small gaps, that are inferior than or equal to a specified number (passed though
the argument gap). When the gaps are superior to the value of the argument gap,
the charts statistics are then reset to zero. The option reset is thus particularly
useful to treat data with different types of missing values or when the processes
are expected to have substantially changed after long gaps and remained the same
after the smallest ones. Since the daily production values do not have missing
values, this argument does not impact the results. It is specified here to omit.
With this function, we calibrate the control limit of the chart at 3.3.

Note that the file cusum_design_bb.py also contains other functions to evaluate
the performances of the chart. In particular, ARL0_CUSUM() allows us to compute
the IC average run length of the chart, which corresponds to the rate of false
positives (see Section 3.2.1). ARL1_CUSUM() can also be used to obtain the OC
average run length, corresponding to the detection power of the chart, for different
shift sizes and shapes.

5.4.3 Phase III: Estimation of shift sizes and shapes using
SVMs

In this third and last phase of the monitoring method, the support vector machines
for extracting and classifying out-of-control patterns are designed. Those methods
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are composed of a SVR to predict the size of the shifts in a continuous range and
a SVC to classify the shape of the encountered deviations among a pre-defined
number of classes.

To this end, we first select an suitable value for the length of the input vector of the
support vector machines (SVM) using Algorithm 4. This can be done automatically
by calling the function input_vector_length() from the file svm_training.py.
This function has three mandatory arguments. The first one is as usual the stan-
dardised IC data, which corresponds here to ε̂η(iIC , t). The other ones are respec-
tively delta_min: the target shift size and L_plus: the control limit of the chart,
which were both selected in the previous subsection. Since few deviations are ex-
pected from the data (which have a high signal-to-noise ratio), we aim at detecting
most of them. Hence, we also set qt=0.95, meaning that the length of the input
vector should be selected as the 95th quantile of the OC run length distribution,
for the chosen target shift size. The precise value of this quantile is not of great
importance as long as an upper (≥ 0.5) quantile is selected. If unspecified, the
quantile is selected by default as the knee of the upper quantiles curve.

from cusvm import svm_training as svm

input_length = svm. input_vector_length ( dataIC_stn , delta_min = delta_target ,
L_plus = control_limit , block_length =bb_length , qt=0 .9 5)

This function returns variable lengths around seven. Although seven would prob-
ably work as well, we select the length of the input vector at ten, to better detect
the smallest drifts (which require large input vectors to be correctly identified).

As explained in Section 3.4.3, the SVM procedures have three main parameters: a
kernel, a parameter λ which represents the trade-off between misclassification and
regularization and ε which corresponds to an approximation error. After few tests
(based on the same criteria than those used to select the parameter λ, see later), we
decide to work here with the radial basis function kernel and with ε = 0.001 (those
are the default values). The parameter λmay then be automatically adjusted to the
problem at hand using the function choice_C() from the file svm_training.py.
This function selects λ (sometimes called C in the literature) to maximize the per-
formance of the SVM classifier and regressor. To this end, it trains the classifier
and regressor on simulated deviations for different values of λ in the range [start,
stop] with a certain step. The function then returns the values of λ that maximize
the accuracy for the classifier, the MSE and the MAPE (defined in Section 3.4.3)
for the regressor. It has five mandatory arguments : data represents the standard-
ised IC data, L_plus denotes the (positive) control limit of the chart, delta_min
is the target shift size and wdw_length is the length of the input vector. The last
argument, scale, corresponds to the scale parameter of the half-normal distribu-
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tions that are used to randomly select the sizes of the artificial deviations6. Here,
it is selected at four to reproduce the highest deviations of the series. The other
(mandatory) arguments have already been chosen.

C_choices = svm. choice_C (data= dataIC_stn , L_plus = control_limit ,
delta = delta_target , wdw_length = input_length , scale =4,

start = 1, stop = 10, step = 1,
block_length =bb_length , BB_method =’MBB ’)

#C value that minimizes the MAPE: 10
#C value that minimizes the MSE: 2
#C value that maximizes the accuracy : 7

With this method, we select a value for λ equal to 7, to obtain the best classifica-
tion results.

Having defined the three main parameters of the SVM procedures, we can now
train the classifier and regressor on artificial deviations. Since the deviations that
were simulated in Chapter 3 are general, we do not modify the training and testing
sets defined in Section 3.4.3. Hence, after randomly sampling series of IC data by
the MBB procedure, three types of artificial deviations of size δ are added top of
those series:

1. jumps: x(t) = xic(t) + δ ;

2. drifts with varying power-law functions: x(t) = xic(t) + δ
T ′ (t)

a, where a is
randomly selected in the range [1.5, 2] ;

3. oscillating shifts with different frequencies: x(t) = xic(t)δ sin (ηπt), where η
is randomly selected in the range [ πm ,

3π
m ].

Although other types of deviations such as spikes or drifts with different power-law
functions could be added in the simulations, those appear to produce satisfactory
results. They were designed to allow the identification of the various kinds of
deviations in the sunspot numbers and appear to be generalisable to other datasets
as well.
In practice, the function training_svm() from the file svm_training.py does
both the training and the testing of the classifier and regressor. It has the same
mandatory arguments as the function choice_C() that we see previously. It has
also an optional argument, C, that allows the user to specify to the value of the
parameter λ, formerly chosen at 7. We also set delay= 2input_length to start
the monitoring after a random delay in the range [input_length, 2input_length].
This parameter has two main purposes: (1) allowing the SVM methods to identify

6In the function, the shift sizes are randomly sampled from two half-normal distribu-
tions (Evans et al., 2000) supported by [−∞, ...,−delta_min] and [delta_min, ...,∞] respectively,
with a scale parameter equal to the argument scale.
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shifts that occur anywhere within the input vector and (2) helping the methods to
detect large shifts by letting the deviations build-up before being sent to the SVMs.
This parameter was selected to delay= 3input_length/2 in Chapter 3 (which
corresponds to a random delay in the range [input_length, 3input_length/2])
but is augmented here since the input vector is much shorter. This allows the
deviations to grow a bit before the start of the monitoring and helps thus the
SVMs to detect high deviations.

reg , clf = svm. training_svm (data= dataIC_stn , L_plus = control_limit ,
delta = delta_target , wdw_length = input_length , scale =4, C=7

delay =2∗ input_length , block_length =bb_length , BB_method =’MBB ’)

The function returns the trained classifier and regressor, which can be saved for
reproducibility purpose

5.5 Results

In the previous section, we adjust the parameters of the CUSUM chart and train
the SVM methods on the photovoltaic energy production data. We will now apply
the method that is fully calibrated to actually monitor those data. We first present
results for the daily values and then we move on to 15-minutes data.

5.5.1 Daily values

The function alerts_info() from the file alerts.py can be used to apply the
complete procedure (CUSUM chart plus SVM methods) on a particular series of
the panel. It has six mandatory arguments, that were all chosen in the previous
section. The first one is data, which represents the standardised series that we want
to monitor. Then, the following arguments are respectively L_plus: the (positive)
control limit of the chart, delta: the target shift size, wdw_length: the length of
the input vector, clf: the trained classifier and reg: the trained regressor. It has
also an optional argument cut, which is set by default to 2L_plus. This argument
defines the maximal value that the chart statistics are allowed to take, i.e. |C+

j |,
|C−j |≤ 2L. It thus prevents the chart to take too high values and therefore stay in
alert for longer periods than the actual deviations of the series.

from cusvm import alerts as appl

data_indv = data_stn [:, region ] # choose a series

[form_plus , form_minus , size_plus , size_minus ,
C_plus , C_minus ] = appl. alerts_info (data_indv , control_limit ,

delta_target , wdw_length , clf , reg)
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Six quantities are returned by the function: the positive and negative shapes
of the shifts (form_plus and form_minus), sizes of the shifts (size_plus and
size_minus) and chart statistics (C_plus and C_minus).

Those can then be passed to another function, plot_3panels() from the file
alerts.py, to show the result of the monitoring. This function has ten manda-
tory arguments. In addition to the six ones previously mentioned (form_plus,
form_minus, size_plus, size_minus, C_plus and C_minus), it also contains: data
representing the standardised series that we want to monitor, L_plus which is the
(positive) control limit of the chart, time denoting the time vector and name corre-
sponding to the index of the series (here it is the name of the distribution system
operator (DSO)). This function returns a plot composed of three panels, which
shows respectively (1) the standardised series of data which is analysed, (2) the
CUSUM chart statistics (|C+|, |C−|) and (3) the shapes and sizes of the shifts
that are predicted by the SVM when the chart is in alert. The optional arguments
time_start and time_stop can also be used to display the results on a subset of
the total period studied.

fig = appl. plot_3panels (data_indv , control_limit , time ,
form_plus , form_minus , size_plus , size_minus ,
C_plus , C_minus , names [ region ], time_start =2015,
time_stop =2016)

A complete script is provided in Appendix 5.7.2, to show the successive calls of
functions for the whole monitoring process.

This function is applied here to the data from the DSO IMEA and the results are
shown in Figure 5.5. Two main deviations are highlighted in this figure. A first
unusual long-term deviation occurred on March 20, 2015 and lasted until May 31,
2015. After few investigations, it appears to be related to a problem in the estima-
tion of the monitored capacity. Indeed, this capacity suddenly drops from 61.17
MWp7 to 34.23 MWp on the 10th of March and then jumps once again from 34.23
MWp to 80.05 MWp during the 20th of May. As the deviation that is seen is shifted
with respect to those changes, there are probably some delays between a variation
in the monitored capacity and its actual effect on the load factors. Having not
access to the complete processing of the load factors yet, we cannot study further
the problem. Such a deviation also appeared six years ago, and as seen with the
sunspot numbers, deviations that occurred in the past are often more complicated
to identify than the most recent ones. Similar deviations over the same period are
also visible in the data from Resa (shown in Figure 5.6a) and IVEG, which are
located in different regions (Resa manages the electricity in Liege whereas IMEA

7MWp stands for Megawatt-Peak. It is a common unit for measuring the power capacity of
an installation. It corresponds to the Megawatt produced under standard ideal conditions.



170
Chapter 5. Application to photovoltaic production data with focus on practical

computational aspects

and IVEG operate in Antwerp). Hence, we suspect that those deviations are more
related to transmission problems than to incorrect measurements.
Another major deviation is visible in IMEA. It is brief and lasted two days from
August 30, 2019 till August 31, 2019. This deviation does not appear in the data
from other DSOs and is corrected in the most recent version of the data. Hence,
we cannot say if it is related to inconsistencies in the monitored capacity or in
the real-time measures. After verification, it can however not be attributed to the
weather conditions since both days were sunny in the whole country.
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Figure 5.5: (a) Upper panel: the standardised daily data ε̂η(i, t) for the DSO IMEA over
the year 2015. Middle panel: the (two-sided) CUSUM chart statistics applied on the
ε̂η(i, t) in square-root scale. The control limits of the chart are represented by the two
horizontal thick lines. Lower panel: the characteristics of the deviations predicted by the
SVR and SVC after each alert. (b) Similar figure over the year 2019.

The monitoring method is also applied to two other operators, Resa and Regie de
Wavre, in Figure 5.6. As can be seen, the data from Resa experience the same kind
of long-term deviation in 2015 than IMEA. It also contains several other short-lived
deviations, that may be related to transient meteorological disturbances. For those
reasons, both operators were classified as out-of-control by the clustering procedure
of Section 5.4.1. On the contrary, the operator Regie de Wavre is a stable DSO
which is included in the pool. It triggers almost no alert on the entire period stud-
ied.
As can be seen in the figures, the sizes of the deviations predicted by the support
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vector machines appear to correspond well to the pace of the standardised data.
The classification results are more complex to analyse. When observed in details
however, they correspond most of the time to our (visual) expectations. The de-
viations are mostly classified as jumps and oscillations although several drifts are
detected. To be better identified, the data should be monitored at a larger scale
than one day. The length of the SVM input vector could also be extended to better
detect the drifts.
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Figure 5.6: (a) Upper panel: the standardised daily data ε̂η(i, t) for the DSO Resa over
the period studied (2015-2021). Middle panel: the (two-sided) CUSUM chart statistics
applied on the ε̂η(i, t) in square-root scale. The control limits of the chart are represented
by the two horizontal thick lines. Lower panel: the characteristics of the deviations
predicted by the SVR and SVC after each alert. (b) Similar figure for the DSO Regie de
Wavre over the same period.

5.5.2 15 minutes values

We now turn our attention to the data obtained each quarter of an hour. A sim-
ilarly procedure has been applied to these data as the one which was previously
described for monitoring the daily values. We first convert all zeros (which corre-
spond principally to the nights) into missing values to simplify the design of the
method. Those zeros are related to the absence of solar radiations and may thus be
considered as missing data in that sense. Then, we apply the same preprocessing
as those described in Section 5.3.3, i.e. we first compute the median of the rescaled
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data, divide the production data by this median and apply a final rescaling on this
ratio. We thus obtain an estimation of the mean of the localized variations that is
monitored here.
To this end, we cluster in phase I SPC the data using the k-means algorithm
and obtain an IC pool composed of 17 DSOs. The operators IMEA, IVEG, Ores
Est, Ores Luxembourg, Ores Verviers and Resa were thus excluded from the pool.
The data are then standardised by K nearest neighbours regression method with
K = 850. In phase II SPC, we calibrate the CUSUM chart using the MBB method
with a block length equal to 14. A longer block length is thus selected here since the
quarter of an hour data experience longer-term correlations than the daily values.
The correlation is indeed higher throughout a day than between consecutive days.
After selecting a target shift size equal to one, the control limit of the CUSUM
chart is fixed at 11.46 to reach an ARL0 of 200. In the last phase of the proce-
dure, the support vector machines are trained and validated on the same kinds of
simulations as those used with the daily values, for an input vector of length equal
to 36 and a parameter λ chosen at 10.
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Figure 5.7: (a) Upper panel: the standardised quarter of an hour data ε̂η(i, t) for the DSO
Resa over the year 2015. Middle panel: the (two-sided) CUSUM chart statistics applied
on the ε̂η(i, t) in square-root scale. The control limits of the chart are represented by the
two horizontal thick lines. Lower panel: the characteristics of the deviations predicted by
the SVR and SVC after each alert. (b) Similar figure for the DSO Regie de Wavre over
the same period.
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The results are shown in Figure 5.7 for the DSOs Resa and Regie de Wavre. As
can be seen, many more jumps are detected here than with daily data, as expected.
The behaviour of the data stays however essentially the same. The data from Resa,
that was classified as out-of-control by the clustering procedure, experience large
deviations in 2015 whereas the DSO Regie de Wavre is stable on the same year (as
well as on the entire period studied).
Figure 5.8a shows the deviation that occurred on August 2019 in IMEA. As can be
seen, abnormally high values were recorded both on the 30th and 31th of August.
The 29th of August and the 1st of September are also represented in the figure,
as a comparison. As explained above, the cause of such deviation is still unknown
but is very unlikely to be related to the weather. Figure 5.8b does not show any
particular deviation but a small decrease (that is too low to trigger an alert) on the
20th of March, 2015 around 10am. This small drop in production was caused by
a partial solar eclipse and illustrates how sensitive the production is to changes of
solar radiations. It also highlights how high frequency data can be used to gather
more precise information about a shift. For practical use, we therefore recommend
to monitor low frequency data such as here daily values whereas a higher frequency
should be used to analyse some particular deviations in details.
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Figure 5.8: (a) Upper panel: the standardised quarter of an hour data ε̂η(i, t) for the
DSO IMEA from August 29, 2019 till September 1, 2019. Middle panel: the (two-
sided) CUSUM chart statistics applied on the ε̂η(i, t) in square-root scale. The control
limits of the chart are represented by the two horizontal thick lines. Lower panel: the
characteristics of the deviations predicted by the SVR and SVC after each alert. (b)
Similar figure for the DSO Regie de Wavre on Mars 20, 2015.
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Note that we monitor here the data at two different scales by averaging the quarter
of an hour data into daily values. In Chapter 3, we apply a monitoring at multiple
frequencies to the data by using a moving average (MA) filter with different window
lengths instead. The MA approach was particularly suited for the sunspot numbers
since they contain a short-term component that was excluded from the monitoring
(at both scales considered). Here however, we do not have such a short-term
component, which should be excluded for the control procedure. Averaging the
data also reduces their number which is quite consequent in the period studied.
There are indeed around 213000 values for the quarter of an hour data over 2015-
2020 against around 2200 for the daily values. There are thus different ways to
apply a multi-scale monitoring on a panel of data.

5.6 Conclusion

In this chapter, we successfully apply the method developed in Chapter 3 to the
photovoltaic energy production. Apart from the preprocessing of the data described
in Section 5.3.3, the monitoring method is used without changes as compared with
the sunspot numbers. The parameters only are adjusted to the photovoltaic energy
data. Indeed, the distribution and the autocorrelation of the data differ from one
application to another. The types of deviations and missing values also vary with
the monitoring problem at hand. The parameters of the monitoring should thus
be adjusted for each particular application. For this purpose, several algorithms
are proposed. Most of them are fully automated or require only few inputs from
the user. They were applied here to select appropriate values for the parameters,
which simplifies the design of the method. In practice, the method also appears to
be robust to the particular choices of many parameters. The training sets of SVM
procedures, which were expected to be particularly dependent on the deviations of
the data, appear to generalise well on a completely different application.

Moreover, the package that is provided with the method can be installed easily,
with all its dependencies. It is composed of functions that allow the application of
the CUSVM method but also the preprocessing of different data. Those functions
often contain several arguments, which allow a large flexibility in the design. Four
different block bootstrap methods are for instance implemented in the package.
The user can also choose between three procedures to deal with the missing values
and the clustering method can be selected among seven. We therefore truly hope
that the method will be employed by other users in the future, since it has the
potential of being applied to a large variety of problems.
Regarding the supervision of the photovoltaic energy production, two different
scales were monitored and several deviations were detected in the data. Although
the origin of some deviations are already identified, we will continue our investi-
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gations in the following, in a closer collaboration with Elia. As the solar energy
production is expected to grow in the future, an increasing supervision of the data
will be required. The incoming set-up of smart meters will also allow the DSOs to
acquire more information about the solar energy. The consumption of the energy
produced may for instance be collected in the future and supervised as well, for a
better power system management.
In the meantime, we will continue to use the method for solving other monitoring
problems.

5.7 Appendix

5.7.1 Figures related to the model

Figures 5.9 and 5.10 represent the different stages of the estimation of the lo-
calized variations of the daily photovoltaic energy production, µ̂η(i, t), described
in Section 5.3. They also display in the last panel the standardised variations,
ε̂η(i, t), obtained after applying the procedure of Section 5.4.1. Figure 5.9 shows
in particular the histograms of all intermediate quantities until the standardised
variations are obtained whereas Figure 5.10 represents those quantities as function
of time. Those results are shown for the distribution system operator IMEA, which
is typically considered as unstable or out-of-control (OC). It experiences two major
deviations: a 2-days jump at the end of August 2019 and a long-term deviation
that lasted around three months (March-May) in 2015.
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Figure 5.9: Different steps to estimate the localized variations of the daily photovoltaic
energy production (η of (5.3.1)) for the distribution system operator IMEA. (a) Histogram
of the daily data, P (i, t). (b) Histogram of the ratio P (i, t)/ĉ(t). This step removes the
main part of the solar signal from the data. (c) Histogram of the localized variations,
µ̂η(i, t), after compensating for the different levels of the regions. (d) Histogram of the
standardised variations, ε̂η(i, t).



5.7. Appendix 177

2015 2016 2017 2018 2019 2020 2021
year

0

10

20

30

40

50

60

P(
i,t

) 

IMEA

a: P (i, t)

2015 2016 2017 2018 2019 2020 2021
year

0.0

0.5

1.0

1.5

2.0

2.5

P(
i,t

)/c
(t)

 

IMEA

b: P (i, t)/ĉ(t)
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Figure 5.10: Different steps to estimate the localized variations of the daily photovoltaic
energy production (η of (5.3.1)) for the operator IMEA. (a) The daily values, P (i, t), as
a function of time. (b) The ratio P (i, t)/ĉ(t) as a function of time. This step removes
the main part of the solar signal from the data. (c) The localized variations µ̂η(i, t) as
a function of time, after compensating for the different levels of the regions. (d) The
standardised variations ε̂η(i, t) along time.
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5.7.2 Script

In this section, we show a complete script that can be executed (unaltered) after
installing the package as described in Section 5.2. This script applies the entire
monitoring procedure to the daily energy production data and displays the result
for the DSO Resa. It reproduces thus Figure 5.6a.
import pickle
import pandas as pd
import numpy as np
import statsmodels .api as sm
import matplotlib . pyplot as plt
plt. rcParams [’font.size ’] = 14
import pkg_resources as pkg

from cusvm import preprocessing as pre
from cusvm import autocorrelations as acf
from cusvm import cusum_design_bb as chart
from cusvm import svm_training as svm
from cusvm import alerts as appl

### load data ( loaded automatically with package )
data_path = pkg. resource_filename (pkg. Requirement . parse (" cusvm "), ’data ’)
df = pd. read_csv ( data_path + ’\ PVdaily .csv ’)
data = np. array (df )[: ,1:]
data = data. astype (’float ’)
data = data/96
names = list(df. columns )[1:]
(n_obs , n_series ) = data. shape

### load time
with open( data_path + ’/ time_daily ’, ’rb ’) as file:

my_depickler = pickle . Unpickler (file)
time = my_depickler .load () #data every day

# ==============================================================
### Preprocessing
# ==============================================================

### rescaling
data_rescaled , k_factors = pre. rescaling (data , period_rescaling =365)

### median
med = pre. median ( data_rescaled )

### remove common signal
ratio = pre. remove_signal (data , model =’multiplicative ’, ref=med)

mu_eta , chi_factors = pre. rescaling (ratio , period_rescaling =365)

### select an IC pool



5.7. Appendix 179

pool = pre. pool_clustering (mu_eta , method =’kmeans ’)
names_IC = [ names [i] for i in range ( n_series ) if i in pool]
names_OC = [ names [i] for i in range ( n_series ) if i not in pool]

mu_eta_IC = mu_eta [:, pool]

### standardise the data
K = pre. choice_K (mu_eta , mu_eta_IC , start =50, stop=2000, step=50) #400
data_stn , dataIC_stn = pre. standardisation (mu_eta , mu_eta_IC , K)

# ===================================================================
### design of the chart
# ===================================================================

### choice of the block length
bb_length = acf. block_length_choice ( dataIC_stn , 1, 50, 1) #8

delta_init = 2 # intial value for the target shift size
ARL0 = 200 #pre specified ARL0 ( controls the false positives rate)

### adjust the control limits
delta_target = np. round ( chart . shift_size (data_stn , pool ,

delta = delta_init , ARL0 _threshold =ARL0,
block_length =bb_length , qt=0 .4 , missing_values =’omit ’)[1]) #2

control_limit = chart . limit_CUSUM ( dataIC_stn , delta = delta_target ,
L_plus =4, block_length =bb_length , missing_values =’omit ’) #3.3

# =================================================================
### train support vector classifier and regressor
# =================================================================

### select the length of the input vector
wdw_length = svm. input_vector_length ( dataIC_stn , delta_target ,

control_limit , block_length =bb_length , qt=0 .9 5) #~7

wdw_length = 10 # fixed value

scale = 4
### find an optimal value for C ( regularization parameter )
C_choices = svm. choice_C ( dataIC_stn , control_limit , delta_target ,

wdw_length , scale , start = 1, stop = 11, step = 1,
delay = wdw_length , block_length =bb_length , confusion = False ) #10 ,2 ,7

C = C_choices [2] # accuracy

### train the classifier and regressor with selected C and kernel
reg , clf = svm. training_svm ( dataIC_stn , control_limit , delta_target ,

wdw_length , scale , delay = wdw_length ∗2, C=C,
block_length = bb_length )
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# ==================================================================
### run the control chart and plot results (with svm predictions )
# ==================================================================

region = [i for i in range (len( names )) if names [i] == ’Resa ’][0]

for i in range (region , region +1):
#for i in range ( n_series ):

data_indv = data_stn [:,i] # monitored series

[form_plus , form_minus , size_plus , size_minus ,
C_plus , C_minus ] = appl. alerts_info (data_indv , control_limit ,

delta_target , wdw_length , clf , reg)

fig = appl. plot_ 3 panels (data_indv , control_limit , time ,
form_plus , form_minus , size_plus , size_minus ,
C_plus , C_minus , names [i], time_start =2015,
time_stop =2021)



Chapter 6

Automated sunspots detection on white light images

We previously developed a general monitoring method. As a quality control pro-
cedure, this method enters into the broader field of automation, which groups all
methods and technologies that tend to reduce human intervention. In general, the
automated methods have several advantages over manual procedures. They often
complete faster their tasks, in a more reliable and reproducible manner. They
also produce more robust results, with their main disadvantages being their lack
of flexibility and high initial costs (in time or money).
To this end, after constructing an automated procedure for monitoring panels of
data such as the sunspot numbers, we turn our attention to the observations them-
selves. We propose a preliminary version of a method for automatically extracting
spots and groups from white light images of the Sun. Contrarily to other exist-
ing automated procedures, the method works on images that are gathered at the
ground, which are more easily obtained and at lower cost than images recorded
in space. They also share more characteristics with the observations and are thus
more appropriate to preserve the continuity of the series over time.
The proposed method has been primarily developed to improve the quality of the
sunspot numbers by being used conjointly with the observations and not for com-
pletely replacing them. It is applied in the following to images recorded in the
station Uccle, which also centralizes the sunspot numbers (Ns, Ng and Nc) from
the different stations and produces the ISN. First results indicate that the method
performs sufficiently well to merit future attention.
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6.1 Introduction

Nowadays, the spots and groups are manually observed and counted every day in
several stations around the world. This task is performed by skilled amateurs but
also professional observers and requires several minutes up to several hours of their
time on a daily basis. As demonstrated in Chapter 2, the counts also suffer from
significant uncertainties and errors that may be directly related to the observers.
The short-term error appears for example to be linked to the number of observers.
It is usually smaller in stations where there is a single observer rather than a team,
alternating the observations on a regular basis. Moreover, some stations have in-
trinsic bias that may be related to the counting method of the observers. Large
spots have for instance more weight than small ones in the counting procedure
applied in the Observatory of Locarno. It may thus be interesting to search for
more automated methods, that are clearly defined. Although several algorithms
have been developed in the literature for this purpose, they are designed to work
on images recorded in space.
Hence, we investigate in the following if an automated method for extracting and
counting the number of spots and groups can be designed from ground-based im-
ages. We thus develop a draft version of such a method and see how it performs on
images recorded in the station Uccle, whose dataset is at the centre of this work.
The proposed algorithm is then compared with manual observations and with an-
other automated method, to better study its performances and limitations.
We emphasis that the objective here is not to propose a fully operational method
but to construct a preliminary version of an automated algorithm. If it shows sig-
nificant potential, this method may then be improved in future research.

This chapter is organised as follows. In Section 6.2, we detail the main character-
istics of the images that will be analysed. Some common morphological operations
are also briefly reviewed in Section 6.3. Our extraction algorithm is then described
in Section 6.4. The two following Sections (6.5 and 6.6) are devoted to the auto-
mated procedures to count respectively the spots and groups from the extracted
areas. The complete procedure is then applied on the images from year 2003 till
year 2020. The main results are presented in Section 6.7 with some comments.

6.2 Characteristics of the images

The images that are analysed in this chapter extend from year 2003 till year 2020
and are distributed through the Solar Influences Data Analysis Centre (SIDC) 1.
Those are taken from the ground with the white light telescope of the Uccle solar

1http://sidc.oma.be/

http://sidc.oma.be/
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equatorial table (USET) in Belgium (Uccle). We analyse images with a resolution
of 750×750 pixels for convenience, since they can be automatically downloaded
from the SIDC website with a simple computing program. The counting and ex-
traction methods run also faster on images of 750×750 pixels than on those with
a smaller resolution.

a: Partial clouds b: Clouds c: Dead pixels d: Disk off-centered

Figure 6.1: Examples of images affected by different types of degradations.

The methods that we propose, such as all methods that have already been devel-
oped in the literature, rely on intensity contrasts. The sunspots, which are darker
than their surroundings, are discriminated from the background using an intensity
threshold. A simple threshold-based procedure is however not adapted to detect
spots in the SIDC white light images for the following reasons. First, the quality
of these images depends on the luminosity of the Sun, which varies along the year.
The quality is also degraded by atmospheric perturbations such as clouds which
may partially or totally conceal the Sun. They may produce irregular patterns
on top of the Sun, which can be confounded with sunspots as can be seen in Fig-
ures 6.1a and 6.1b. Second, the limb darkening effect — an optical effect that is
responsible for the darkening of the edges of the Sun with respect to its centre
(Neckel and Dietrich, 1994) — also affects the detection of sunspots in the limits of
the disk. Third, the sunspots have various shapes, sizes and intensities —varying
along the sunspots’ life— which complicates furthermore their detection. Moreover,
few images suffer from failures in the CCD sensors which record the images as in
Figure 6.1c. Some others such as those of Figure 6.1d are also off-centred due to
e.g. the wrong orientation of the instruments with respect to the Sun. The method
requires thus several steps to accommodate the aforementioned features/defaults
of the images.

The automatic extraction algorithm that we developed is based on mathematical
morphology tools. It is inspired by the Sunspot Tracking And Recognition Algo-
rithm (STARA) developed by Watson et al. (2009), which is in turn based on the
work of Curto et al. (2008). We first present common morphological operations in
the following and then we explain our extraction and counting methods.
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6.3 Morphological operations

• Erosion XΘB:
The erosion of a grey-scale image X by a structuring element (SE) B is a new
image where all pixel intensities have the minimum value of the pixel intensities
in their neighbourhood. This transformation shrinks the small bright elements of
an image. An erosion may be applied by using a minimum filter. This filter acts
by translating a SE of a pre-defined size over the image. At each step, the pixel
intensity at the centre of SE is replaced by the minimal intensity computed over
its neighbouring pixels inside the SE domain.

• Dilatation X ⊕B:
The dilatation of a grey-scale image X by a SE B results in a new image where all
pixel intensities have the maximum value of the pixel intensities in their neighbour-
hood. This operation enlarges the bright elements of an image. A dilatation may
be applied by using a maximum filter. This filter displaces a SE over the image and
replaces the pixel intensity at the centre of SE by the maximal intensity computed
over its neighbouring pixels inside the SE domain.

• Opening X ◦B = {(XΘB)⊕B}:
The opening of an image is defined as an erosion followed by a dilatation. This
transformation suppresses the brightest regions, smaller than the SE, of the image.

• Closing X •B = {(X ⊕B)ΘB}:
The closing of an image is defined as a dilatation concatenated with an erosion.
This transformation suppresses the darkest regions, smaller than the SE, of the
image.

• Top-hat X −X •B:
The top-hat transformation subtracts the closing image from the original image.
The closing image is similar to the original but does not contain the darkest regions
of the image. Therefore, subtracting the closing image from the original results in
a new image which only contains the erased objects.
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a: Original image with some
sunspots.

b: Transformed image by the minimum
and maximum filters.

c: Difference between the original
and the transformed images
(similarity index (SSIM) values).

d: Resulting image after isolating
the solar disk from the
background.

Figure 6.2: Preprocessing whose aims are to identify the solar disk and highlight the spots
of the image.

6.4 Extraction algorithm

6.4.1 Solar disk detection and structures enhancement

The first step of the algorithm is to identify the solar disk in the images. This is
not a trivial task since the apparent diameter of the Sun changes during the year.
Moreover, the position of the centre of the Sun also changes from one image to
another due to the orientation of the camera with respect to the Sun, as seen in
Figure 6.1d. Different methods have been used in the literature for this purpose.
Zharkova et al. (2003) used for instance a ‘canny edge’ detector while Curto et al.
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(2008) applied a combination of an erosion, a gradient transformation and a thresh-
old. Once the solar disk is located, the second step is to enhance the structures
of the images with respect to their surroundings, to bring the sunspots out before
applying an intensity threshold. To this end, after determining the limits of the
solar disk, Watson et al. (2009) applied a top-hat transformation on the images to
locally enhance the darkest regions.

Inspired by those procedures, the two aforementioned steps are mixed into a four
stages procedure in our method, which is illustrated in Figure 6.2. The original im-
age is displayed in Figure 6.2a. (1) We first apply an erosion (minimum filter) with
structuring element (SE) of size equal to 10× 10 pixels to eliminate the noise (i.e.
the white pixels) in the image. (2) We also apply a dilatation (maximum filter) with
particular SE of size superior than or equal to 10 × 10 pixels to remove the spots
from the image. Figure 6.2b shows the resulting image after applying those filters.
(3) Then, the differences between the original image and the transformed image are
detected using a structural similarity index measure (SSIM) (Wang et al., 2004) 2.
The values of this index are represented in Figure 6.2c., where the darkest pixels
correspond to the largest differences in the images. (4) Finally, a circle detector
based on the Hough Gradient Method (Davies, 1988) is employed to automatically
find the position of the centre and the radius of the circle 3. The interior of the
solar disk is then isolated in the images, as shown in Figure 6.2d.

Since the size of the sunspots varies over a wide range, we select the size of the
dilating SE for each image. Indeed, large SEs are not adapted to remove local
structures caused for example by clouds (which are even larger and may cover the
entire image). They may transform those structures in such manner that they
are confounded with spots. Whereas small SEs may only remove parts of the
largest spots. Hence, we design an automated procedure for selecting the size of
the dilating SE over the range 10 × 10 to 60 × 60 pixels. For each value of SE,
the erosion (step 1) and the dilatation with the chosen SE size (step 2) are first
applied to the image. The coordinates of the solar disk are then retrieved with the
circle detector previously mentioned. Then, the spots on the interior of the Sun are
extracted using an intensity threshold. To not being affected by the limb darkening
effect, the spots located only within a smaller circle of radius equal to two third
of the radius of the whole solar disk are taken into account. In this smaller circle,
the pixels whose intensity is smaller than the mean intensity of the image minus
3 standard deviations are kept. Since the purpose of the dilation is to remove the
spots from the image, the size of the SE is finally selected as those which gives the

2The structural similarity index is obtained with the function structural_similarity()
which is implemented in the python package skimage (Van der Walt et al., 2014).

3The circles are detected with the function HoughCircles() from the python package
opencv (Bradski, 2000).
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minimal number of spots on the Sun. Once the appropriate size of the dilating SE
is selected, the structural similarity index and the circle detector are then applied
to the image in step 3 and 4 to finalise the preprocessing of the image.
Note that we also apply a security margin (which depends on the image) around
the limits of the solar disk, to remove the darkest part of the disk. With this
margin, the detection of the spots is protected against the limb darkening effect.

6.4.2 Sunspots detection

At this point of the method, the solar disk is fully identified and the prominent
structures are enhanced from the background, as can be seen in Figure 6.2d. The
sunspots may then be extracted using an adaptive threshold intensity similar to
those described in Watson et al. (2009). In this last step, the appropriate value for
the threshold is computed for each image as follows. Starting from a low value of
the threshold, the pixels darker than this threshold are extracted from the image.
Among those, the number of disjoint pixels are counted (a pixel in the middle of
an image is assumed to have 8 direct neighbours). They correspond to potential
disjoint spots. The procedure is then iterated for higher values of the threshold
until the number of (disjoint) spots explodes, meaning that the background level
is reached. In practice, the threshold varies between I − 7std(I) and I − 2std(I),
where I is the image, I is the image mean intensity and std denotes the standard
deviation. The appropriate threshold is finally selected as the first value at which
the number of (disjoint) spots becomes stable.

We observe that this algorithm tends to over-detect the spots at solar minima. This
effect is somehow similar to the tendency of the observers to over-scrutinize the Sun
over the same periods. Indeed, the algorithm is based on an intensity threshold
that depends on the image. Hence, the method may identify the darkest regions of
an image as spots, even if this image does not contain any actual spot. To correct
this effect, we use the mean structural similarity index measure (MSSIM) (Wang
et al., 2004) over the image as a primary criterion to discriminate images that
actually contain spots. This index is computed previously in the algorithm, when
the original image is compared to the one that has been transformed by an erosion
and a dilatation in step 3. It measures the similarity between both images. The
MSSIM takes values between -1 and 1, where a score of 1 indicates that both
images are identical and 0 means that the images have no structural similarity.
Since a high value of the MSSIM most probably indicates that the image does not
contain spots, we select the intensity threshold as I − 8std(I) when the MSSIM
is larger than or equal to 0.98. This low value for the intensity threshold should
then prevent the algorithm from detecting too many “false” spots. Whereas, when
the MSSIM is smaller than 0.98, the intensity threshold is selected as previously
explained.
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6.5 Number of sunspots

Once the darkest pixels of the image have been retrieved, they should be assigned
to their own sunspot. To that end, region-growing algorithms based on a neigh-
bourhood criteria are often used in the literature (Curto et al., 2008). Similarly, we
design an algorithm that browses the entire image. When a pixel that was marked
as a spot candidate (when its intensity is lower than the pre-selected threshold) is
detected, the pixel is associated to the spot attached to at least one of its eight
direct neighbours. If the pixel neighbours do not belong to a spot or are marked
as background, the pixel is attributed to a new spot. If, at some point in the
algorithm, a pixel is surrounded by pixels belonging to two different spots, these
spots are simply merged into a unique larger spot.
This algorithm then computes the number of disjoint spots in the images.

6.5.1 Umbra and penumbra

As stated in the introduction, large spots usually have an internal region, called the
umbra, that is darker than the remaining part of the spot, called the penumbra.
Such a spot is represented in Figure 1.5. Some records contain distinct information
about the umbra and the penumbra but most of them consider both as a single
entity. An automated algorithm could however benefit from such physical informa-
tion to better identify overlapping spots. This may by particularly useful at solar
maxima, when the spots are typically more numerous and larger than during other
parts of the solar cycle.
To this end, Watson et al. (2011) developed a method that is able to distinguish
the umbra from the penumbra based on their different intensities. They draw the
histogram of the pixels intensity, which has two peaks, and identify the local min-
imum between these peaks, which corresponds to the intensity at the edge of the
umbra.

We complete our automated counting procedure by designing a different method
based on the self-organizing map (SOM) (Kohonen, 1990), a well-known dimension-
reduction technique. The method may be explained as follows. A SOM is first
applied on each disjoint spot to reduce its intensity into six different levels as
represented in Figure 6.3. Then, we only look at the lowest level of intensity
(represented in dark blue in the figure) and the number of disjoint pixels are counted
for this level. Those correspond to the darkest parts of the spot that are disjoint,
i.e. to potential umbrae. The number of umbrae are also counted by considering
simultaneously the first two (dark and light blue in the figure), three (dark blue,
light blue and green) and four (dark blue, light blue, green and orange) lowest
intensity levels. The number of umbra(e) inside a spot is finally selected as the
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a b

c d

Figure 6.3: Self Organizing Map (SOM) applied to four different sunspots. The upper
plots represent the original sunspots whereas the lower plots correspond to the resulting
images after being reduced by the SOM into six different intensity levels. With the
algorithm described in Subsection 6.5.1, one umbra is detected in the image (a), two,
three and four umbrae are then counted in the subfigures (b), (c) and (d) respectively.

maximum of the number of umbrae obtained for the first, first two, first three and
first four intensity levels. Note that an umbra should at least contain three pixels
to be recorded in the method. This procedure is illustrated in Figure 6.4 for a
complex spot (which is actually composed of seven overlapping spots).
This algorithm is a bit heuristic but appears to work well in practice. The number
of umbrae obtained by the method corresponds to those that are manually counted
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a: Initial spot

b: Three (disjoint) umbrae c: Seven (disjoint) umbrae

d: Six (disjoint) umbrae e: Five (disjoint) umbrae

Figure 6.4: (a) An initial ‘spot’ which is actually composed of several overlapping spots.
(b) The lowest intensity level of the spot is represented in dark blue and three umbrae
are counted by the method (an umbra should be at least composed of three pixels to be
recorded). (c) The two lowest intensity levels of the spot are then represented in dark
and light blue and seven umbrae are identified. (d) The three lowest intensity levels are
showed in dark blue, light blue and green for a total of six umbrae. (e) Finally, five umbrae
are registered with four intensity levels, in blue (dark and light), green and orange. With
the algorithm previously described, the method identifies thus seven umbrae in the initial
spot.

in most of the cases. With this method, the number of spots may be associated to
the number of umbrae in the images.
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6.6 Number of sunspot groups

Once we identified the number of spots in the images (either by taking into ac-
count the internal umbrae or not), we can develop an automated procedure for
grouping them. In Curto et al. (2008), the authors used the same procedure —
namely a region-growing algorithm based on a neighbourhood scale — to assign
the spots to their groups as those used to attach pixels to their spots. Similarly
to Dasgupta et al. (2011), we exploit here different clustering methods to group the
spots. We concentrate on three well-know algorithms: the k-means (Lloyd, 1957;
MacQueen, 1967), the expectation-maximization clustering using Gaussian mixture
models (GMM) (Dempster et al., 1977) and the density-based spatial clustering of
application with noise (DBSCAN) (Ester et al., 1996). Those are described in Ap-
pendix 6.9.1. The two first methods are general-purpose and may be applied to a
large variety of data. k-means is particularly efficient to group data into a small
numbers of clusters with regular or circular size whereas the GMMs based clus-
tering is more suited to deal with elongated or irregularly shaped clusters, since it
naturally generates groups of Gaussian forms. These procedures strongly depend
on the number of clusters however, which cannot be automatically identified by
those methods. Hence, we also use the DBSCAN to group the spots, as proposed
in the works of Nguyen et al. (2006) and Adipranata et al. (2013). This procedure
is able to automatically find the number of clusters from a neighbourhood size,
another parameter which is much easier to adjust. The method is also expected to
perform particularly well in case of uneven cluster sizes.
Note that the number of clusters corresponds here to the number of groups. We
still carry on the discussion of the clustering algorithms however, since we are also
interested to actually cluster the spots into groups (and not only to count the num-
ber of groups). This could be useful to visually control the results of the clustering
methods or to analyse later some images in details.

Before describing our clustering procedure, we first explain how to select the opti-
mal number of clusters (i.e. the number of groups) for k-means and GMM cluster-
ing. Those can be automatically chosen using two different criteria. The first one
is the within-cluster sum of squares criterion, also called inertia, which writes as:

n∑
i=0

min
µj∈C

(||xi − µj ||2),

where x represents a spot among the N spots of the image and µj denotes the
centre of a cluster C among G (fixed) distinct clusters. The inertia is thus a mea-
sure of the internal coherence of the clusters. The k-means algorithm used this
criterion to find optimal values for the centres µj . Yet it can also be used to choose
the optimal number of clusters (Gopt) for different clustering algorithms. Since the
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inertia tends to zero when the number of clusters becomes close to the number of
spots, the optimal value of G may be selected as the “knee”4 of the inertia curve.
The second criterion is the mean Silhouette coefficient (Rousseeuw, 1987), another
widely-used measure of the clustering quality. The Silhouette coefficient is com-
puted as the difference between the mean nearest-cluster distance and the mean
intra-cluster distance, for each data sample. The mean Silhouette coefficient is then
simply obtained by taking the mean of the Silhouette coefficient over all samples.
It takes values between -1 and 1, where negative values indicate mis-classifications
and positive values correspond to correct classifications. This criterion can be eval-
uated for different number of clusters: it is maximized at the optimal value.

The clustering procedure then works as follows. We first compute the centre of
mass of each spot along three dimensions: intensity, x and y coordinates. The
intensity of these centres of mass is defined as the mean of the pixel intensities
of the spots. The coordinates of the centres of mass are then computed as the
sum of the pixel coordinates of the spots weighted by their intensity (the sum are
normalized). This step allows us to neglect the spatial extension of the spots. It
also simplifies the computations since a spot will only be represented by a vector
of three numbers in the following.
The clustering algorithm distinguishes then four different cases. (1) When there
are no spots detected, zero groups are of course registered. (2) When there is a
single spot, a single group is also recorded. (3) If two spots are detected on the Sun,
we compute their (euclidean) distance. If it is superior to an arbitrary value fixed
at 100, we consider that there are two groups on the Sun while if the distance is
inferior to 100, a single group is counted. (4) When two or more spots are detected,
the procedure becomes more complicated.
The inertia and the mean Silhouette coefficient 5 are first computed for different
numbers of clusters starting at two till the number of spots. The optimal number
of clusters with respect to both criteria is selected as previously explained for the
k-means and GMM methods. The number of clusters in then selected in both
methods as the minimum of the number of clusters obtained with the inertia and
Silhouette. The neighbourhood size parameter of the DBSCAN is selected as well,
by computing the mean distance between the spots to their first ten (or less than
10 if there are less than 10 spots on the Sun) nearest neighbours. It is then selected
as the knee of the distance curve. The three different clustering methods with their
optimal parameter are finally applied to the centres-of-mass of the spots, for the
actual grouping. The number of groups is then simply obtained by counting the
number of clusters obtained with each method.

4The knee of the inertia is located using the function KneeLocator() from the python package
kneed (Satopaa et al., 2011).

5The mean Silhouette coefficient is obtained using the function silhouette_score() from the
python package scikit-learn (Pedregosa et al., 2011).
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6.7 Results

In the following, we compare the number of spots and groups obtained with our
extraction method to the observations. Those observations correspond here to the
counts recorded in the station Uccle (UC), the same station which also registered
the images that we analysed and which is responsible for producing the ISN. Note
that the counts observed in UC are close to those of the median of the network.
We also inspect the STARA sunspot catalogue (Watson and Fletcher, 2010), re-
grouping observations from May 1996 to October 2010 (solar cycle 23). This cat-
alogue contains the number of spots which are extracted using the automated
STARA algorithm described in Watson et al. (2009) from images obtained in space.
Those are acquired by the Michelson Doppler Imager (MDI) instrument on the So-
lar and Heliospheric Observatory (SoHO), a spatial observatory orbiting around
the Sun. Figure 6.5a shows the number of spots obtained by the three different
procedures. The number of groups are represented in Figure 6.5b for our extraction
method and the observations only, since the STARA catalogue does not contain the
number of groups. As the quality of the images are variable (e.g. some of them are
particularly affected by clouds), we remove the outliers in our extracted numbers
in the figures. These outliers are defined as values that do not fall into two (resp.
one) standard deviations around the mean of the number of spots (resp. groups),
where the mean and the standard deviation are computed in moving windows of
length equal to 60 (around 2 months).
As can be seen in the figures, the number of spots detected by the automated pro-
cedures (our method and STARA) have a lower level than those obtained by visual
counting. Similarly, the number of groups is two times smaller (at least during the
years 2011-2016) with the extraction methods than with the observations. This is
expected since the numbers that are extracted from a single image of the Sun are
often inferior to those that are counted by directly observing the Sun over several
minutes, a method which “integrates” many images of the Sun. The automated
procedures have thus a lower resolution.

The STARA and the extraction algorithm that we developed differ however for
three main reasons. First, the definition of a spot in the STARA algorithm ex-
cludes the pores, i.e. the smallest spots without penumbra. We record on the
contrary all spots. Second, the resolution of the MDI instrument which recorded
the images in space (used by STARA) is different from the resolution of the USET
telescope, which provides the images that we analyse here. We also work with
images of 750 × 750 pixels resolution to save some computing time, whereas the
original images have a smaller resolution. The resolution of our images differs thus
from the one of the STARA images. Third, the images obtained from space (SoHO)
are not affected by the atmospheric conditions, contrarily to those gathered at the
Earth’s surface. The detection threshold is thus higher in ground-based images, to
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avoid detecting too many background pixels. The CCD camera has also a longer
lifetime on Earth since it is not stroked by a continuous stream of particles, which
are mainly stopped by the atmosphere. Yet the images quality may be degraded
by dust or water on the CCD sensors. Our method detects thus approximately the
same numbers of spots as STARA, even if it excludes the pores.
Note that it could be interesting to apply our algorithm to the images obtained by
the MDI instrument: to see if the differences in the number of spots recorded by
STARA and our method are more related to dissimilarities in the algorithms or in
the images.

To better compare the observations with the extracted numbers, we rescale the lat-
ter on the former using a parametric scaling of the form axb. The parameters a and
b were adjusted on the observations separately for the number of spots and groups.
The results are shown in Figure 6.6. The values of the rescaling parameters are
equal to 2.24 (a) and 1.11 (b) for the spots and 0.52 (a) and 2.20 (b) for the groups.
A quadratic scaling appears thus to perform better than a linear scaling for the
number of groups. The Euclidean distance between two vectors (x1, x2, ..., xn) and
(y1, y2, ..., yn) is defined as d =

a

(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2. Using
this formula, we also compute the distance between the extracted numbers and
the observations on the whole period studied, which covers the years 2003-2020.
It is equal to 136 for Ng and 1090 for Ns. After rescaling, this distance drops to
99 for Ng and 529 for Ns. Since Ns and Ng do not vary on the same scale, we
also compute the distance between the extracted and observed numbers of groups,
when those groups are rescaled on the number of spots. In this case, we obtain a
value of 834 instead of 99 for Ng, after rescaling. This illustrates that the extrac-
tion algorithm works better for identifying spots, which have an Euclidean distance
equal to 529 after rescaling, than groups for which the distance is equal to 834.
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Figure 6.5: (a) The number of spots obtained by the STARA algorithm and by our
developed algorithm are represented respectively in blue and in orange. The observations
recorded in the station UC are also shown in green. Note that we show a longer period
than those of our extracted number in the figure, to display the STARA numbers on a
complete solar cycle. (b) The number of groups extracted with our algorithm is presented
in orange and the observations of the station UC are in green. All numbers have been
smoothed by a moving average filter on 54 days for readability purpose.
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Figure 6.6: (a) The number of spots that is obtained by our extraction algorithm is
represented in purple. It is rescaled on the observations of the station UC, which are
shown in green. (b) Same figure for the number of groups.
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As can be seen in Figure 6.6, the extraction method does not work properly around
the solar minima of 2008. In this period, the algorithm detects too many spots (and
thus groups) with respect to the observations. This over-count may be related to
the fact that the algorithm extracts and detects the darkest parts of the images at
minima, even if they do not contain actual spots. We have already tried to correct
this effect in Section 6.4 by using the mean structural similarity index as a first
indicator of the presence of spots but it might be insufficient. The over-count is
however not visible around the next solar minima in 2019. We extend the analysis
of the images until the end of 2020 and this effect still does not appear. Hence,
we suspect that the over-count might be more related to the images than to the
extracting procedure, which remains to be investigated.
In general, the extraction algorithm also performs better on images recorded af-
ter 2011. The Euclidean distance between the extracted number of spots and the
observations drops to 250 in the period covering years 2011-2020, after rescaling
(instead of 529 for the years 2003-2020). The extracted numbers are thus also
presented in Figure 6.7 solely for the solar cycle 24, which extends from December
2008 till December 2019. They are better adjusted visually to the observations on
this cycle than on the whole period studied.
The extracted numbers of spots that are presented in this section do not distin-
guish the umbra from the penumbra. When the internal umbrae are counted as
separate spots, we obtain higher numbers of spots. Those can be rescaled on the
observations with scaling parameters are equal to 1.81 (a) and 1.07 (b). The Eu-
clidean distance also decreases from 1090 to 941 when counting the umbrae. After
rescaling, this distance drops to 540. Taking into account the internal umbrae lead
thus to numbers that are effectively closer to the observations.

The results presented for the number of groups are obtained using the Gaussian
mixture models (GMM) clustering. They are close to those obtained by the k-
means algorithm. The DBSCAN detects on average 20% less groups than the two
other methods on the whole period studied. In general however, small variations
are visible between the three different clustering methods. Hence, we only show
results associated to GMM clustering. As stated before, the method for auto-
matically counting the groups works less well than those to count the individual
spots by around 40% (we obtain 529/834=0.64 with the Euclidean distances previ-
ously computed). In general, counting the number of groups is more complicated
task than counting the spots, even for manual observations. More research is thus
needed to obtain a better match between the extracted and the observed numbers
of groups. Introducing more physical criteria such as a typical neighbouring scale
for sunspots to be part of the same group (Curto et al., 2008) could be beneficial
for the method. The relation between the number of spots and groups, which may
be studied in past data, may also provide a physical range of values for the number
of groups.
In further research, the method could also be substantially modified to incorporate
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Figure 6.7: (a) The extracted number of spots is represented in purple for the solar cycle
24. It is rescaled on the observations of the station UC, which are shown in green. (b)
Same figure for the number of groups.
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magnetic information about the spots. A more complex procedure involving mag-
netograms in addition to white light images could then be designed such as in the
works of Zharkov et al. (2005); Colak and Qahwaji (2008). This upgraded proce-
dure would most probably better identify pairs of corresponding spots, which may
refine the detection of overlapping spots or spots with irregular shapes. It could
also improve the grouping procedure similarly to the approach taken by Colak
and Qahwaji (2008), where the magnetogram images are combined with a neural
network to cluster the spots into groups.

6.8 Conclusion

Our method shows that an automated procedure can be designed to count the
spots and groups from ground-based white light images, such as those recorded
in the station Uccle. Contrarily to images obtained in space, the ground-based
images share more properties with the observations since they are both affected
by the atmospheric conditions. The extracted numbers from ground-based images
are thus expected to better correspond to the observations, which is valuable to
preserve the continuity of the series over time. Moreover, such images are more
easily obtained than those gathered in space. The instruments can for instance be
installed at lower cost and have a longer lifetime on the ground since they are pro-
tected from radiations by the atmosphere. The algorithm and instruments which
record the images could thus be easily integrated in the actual network, with little
additional cost.
An automated counting procedure has also the advantages over manual observa-
tions of being robust against most of the observer-related variations, since the same
algorithm can be implemented in all stations. Those variations have diverse origins
such as differences in the counting methodology, change of observers or eyesight
declines. The method also requires less interventions from the observers. The
proposed algorithm has thus several advantages with respect to other existing au-
tomated methods and with respect to the observations.

The automated method developed in this section has however a lower resolution,
which depends on the values of certain parameters and rules in the algorithm as well
as on the resolution of the USET instrument. To solve this problem, we can rescale
the extracted numbers on the observations, as we did previously. We could also
apply the algorithm to several images of the Sun, obtained successively or spaced
by an arbitrary interval, and record the maximum number of spots extracted from
those multiple images. This approach would be more similar to the direct observa-
tions of the Sun over a certain amount of time. We do not implement it however,
since those images are not yet available but they could be easily registered in the
future.
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As stated in the introduction, the method proposed in this section is not ready for
being implemented and used. Prior to this, consequent work is required to improve
the method, by taking for instance more physical information into account. This
preliminary version of the algorithm demonstrates however that it is possible to
extract the sunspot numbers from ground-based images. A fully-effective method
remains to be developed, for extracting in particular the number of groups.
When this automated method would be operational, it may then be implemented
in different stations, at least the professional observatories, and used jointly with
the observations. The visual and automated counting could serve both as controls
for each other. After a sufficient amount of time for thorough study and tests of
the method, the extracted numbers could also participate in the construction of
the International Sunspot Number as stations will hopefully less observer-related
errors. This integration should however be sufficiently “smooth” to ensure the
continuity of the series over time.
It is more difficult to say if an automated method such as the one that we developed
here could one day replace totally the manual observations. This depends on
whether the scaling between both methods changes from one solar cycle to another
or if it stays more or less constant. Further analyses of the method over the next
solar cycles could bring more definite answers to this question.

6.9 Appendix

6.9.1 Clustering methods

In this appendix, we give a rapid overview of different clustering methods. A clus-
tering procedure is an unsupervised method that classifies data into specific groups.
Data from the same group usually share some properties while data from different
groups are more dissimilar. In the following, we present five different algorithms:
the k-means (Lloyd, 1957; MacQueen, 1967), mean-shift (Comaniciu and Meer,
2002), DBSCAN (Ester et al., 1996), expectation-maximization clustering using
Gaussian mixture models (Dempster et al., 1977) and the agglomerative hierarchi-
cal clustering (Anderberg, 1973). We refer to the documentation of the package
scikit-learn (Pedregosa et al., 2011) in Python6 for a more detailed review of
the main clustering procedures, with graphical examples.

6The review of the clustering methods can be found at the following link: https://
scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering.

https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
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K-means

One of the most commonly-used clustering methods is the k-means. To cluster
data, this general-purpose method needs to know in advance the number of clusters,
G. It then groups the data to minimize the inertia, i.e. distance between each point
to the centre of its cluster:

n∑
i=0

min
µj∈C

(||xi − µj ||2), (6.9.1)

where x represents a data point among a set of n points and µj denotes the centre
of a cluster C from G different clusters.
The k-means is based on the Lloyd’s algorithm (Lloyd, 1982), which works as fol-
lows. The algorithm starts by defining G centres, randomly selected in the data
space or directly from the data themselves. These centres have thus the same
dimension as the other data points. Then, the distances (Euclidean distance or
maximum distance, etc.) from each point to the centres are computed. The points
are then attributed to the group whose centre is the closest to them and the group
centres are updated as the mean of all points in the group. These steps are then
repeated several times until the group centres converge. Note that the algorithm
may also be run several times with different centres initializations and the best
results may be kept.

This method is simple and relatively fast. It relies however on the choice of the
number of centres, G, which may be complicated to estimate (especially in high
dimension). As the method varies from one initialization to another, the results
may also be difficult to reproduce. Moreover, since the cluster centres are computed
using the mean, k-means does not perform well when the clusters have elongated
or irregular shapes (in 2D or higher dimensions). Similarly, the method is not able
to distinguish concentric clusters of different radius located on the same centre as
well. Hence, it is mainly used in applications where there are a few number of
regular and even-sized clusters.

Mean-shift

Contrarily to the k-means, the mean-shift clustering uses a sliding-window to locate
dense areas of points. It associates centre candidates to the mean of dense areas
and then filters them out in a final post-processing step. The algorithm works thus
as follows. First, a point c is randomly selected from the data. A circle of radius r
is then drawn around c, like a kernel. At each step, the window is moved to regions
of higher density by shifting the centre of the circle to the mean of the points within
the window. The circle is moved until there is no direction that can increase the
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number of points inside the circle. The algorithm is run several times for different
starting points c, until all points belong to a group. Overlapping groups are finally
merged into the group containing the highest number of points.

This method is preferably used when there are a large number of uneven-sized
clusters. The centres of the groups also correspond to regions of high density, which
may be desirable in some applications. Contrarily to the k-means, the mean-shift
automatically finds the number of clusters in the data. It depends however on
the choice of the radius r of the circular window, which may be complicated to
determine.

DBSCAN

The density-based spatial clustering of application with noise (DBSCAN) is an-
other density-based method, similar to the mean-shift. The DBSCAN considers
that a cluster is a region of high density, which is separated from other clusters
by regions of low density. The algorithm starts by choosing randomly an unvisited
point. Then, the neighbourhood of the point (i.e. all points within a distance ε to
the point) is analysed. If the neighbourhood does not contain enough points, the
point is classified as noise. Otherwise, the point becomes the first point of a new
cluster. In both cases, the point is marked as visited. All neighbours of the point
are then added in the cluster as well as all their neighbours and the neighbours of
their neighbours, etc. within a distance ε and marked as visited. The algorithm is
repeated with another unvisited points until all points are visited (either classified
as noise or part of a cluster).

The DBSCAN is thus able to automatically find the number of clusters. It can also
differentiate noise from actual data and find clusters of arbitrary shapes. Hence,
it is particularly useful to cluster data containing outliers, that should not be part
of any group. It is also efficient to deal with uneven cluster sizes. Yet, the method
depends on two parameters: the neighbourhood ε and the minimum number of
points to define a cluster. These parameters may be difficult to estimate, especially
when the clusters have varying densities or in high dimension.

EM clustering using GMM

As seen previously, the k-means does not perform well when the clusters are not
circular (for 2D data). To overcome this problem, the expectation-maximization
(EM) clustering using Gaussian mixture models (GMM), called GMM method in
the following, was designed. This method uses the EM algorithm to fit Gaussian
mixture models to the data. It generates thus Gaussian shaped instead of circular
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clusters, which can take any elliptical shape desired (in 2D). These clusters are thus
described by two parameters: the mean and the variance, which are progressively
adjusted to the data by the EM algorithm.
For a pre-specified number of clusters G, the first step of the algorithm is to ini-
tialize the clusters using random parameters. For each point, we compute then the
probability that it belongs to the different clusters (points closer to the mean of a
cluster are more likely to belong to that cluster). The parameters of the clusters
are then updated to maximize the likelihood of the data given those cluster param-
eters. Practically, the mean and the variance of the clusters are adjusted using a
weighted sum of the data point locations, where the weights of the points are the
probabilities that the points belong to each cluster. These steps are then run until
convergence.

The two major advantages of the GMM method with respect to k-means are that
the clusters can have variable shapes and that the data are clustered using prob-
abilities. This method is thus often used for applications where the clusters are
irregular or where a single data point may belong to several clusters, with different
probabilities (mixed-membership).

Agglomerative Clustering

The last clustering procedure that we present here is a hierarchical method. In
general, there are two categories of hierarchical clustering: the bottom-up and the
top-down models. The agglomerative clustering is a bottom-up method, which
successively merges pairs of (closest) clusters until there is only one cluster left.
This method works as follows. Each point is initially treated as a cluster. The
distance between two different clusters is then evaluated using a linkage criterion,
which determines the distance between two clusters from the pair-wise distances
between points in the first cluster to those of the second. The linkage criterion is
usually chosen as the average linkage, though other criterion such as the maximum
linkage or single linkage can also be used. It corresponds to the average pair-wise
distance between all points of a pair of clusters. Then, at each iteration, the pairs
of clusters closest to each other are merged. The algorithm is iterated until there
is only one remaining cluster. With this method, it is thus also possible to group
the data into a desired number of clusters, simply by stopping the algorithm when
this number is reached.

Unlike several other methods, the agglomerative clustering is robust against the
choice of the distance metric (though not against the linkage criterion). All distance
metrics (e.g. Euclidean distance, Manhattan distance, etc.) lead thus to similar
results. Moreover, the algorithm can either cluster the data into a desired number
of clusters or automatically find an appropriate number of clusters based on a
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threshold distance. With this last method, the algorithm stops merging clusters
if their distance is superior to that threshold. This method is thus particularly
useful to cluster data which have an underlying hierarchic structure that we want
to unravel. It is however pretty slow compared to the other methods.



Chapter 7

Discussion and Extensions

There are several ways to summarize this work. The proposed attempt is to view
the whole thesis as the development of different methods that target a common ob-
jective: improving the quality of panels of time-series over time, and in particular
the sunspot numbers. Although mainly related to this specific application, the ap-
proach taken is indeed general. The first step of a procedure that aims at improving
the quality of a particular dataset is most of the time the development of a model
for those data, as we did in Chapter 2. This allows a better comprehension and
analysis of its different sources of errors. Once they have been identified, different
methods can be set up to prevent the occurrence of similar inconsistencies in the
future. For instance, the procedure for collecting the data can often be modified to
reduce some kinds of errors, as those proposed in Chapter 6. A monitoring scheme,
a powerful tool to automatically detect current as well as past deviations, is also
often constructed. This allows a better identification of the deviations and helps
preserving the quality of the data over time as demonstrated in Chapters 3 and 4.
In a last step, the monitoring procedure is also frequently used to reconstruct past
series, which remains to be done with the sunspot numbers.
Among those different steps, some of them are thus particular to each dataset, such
as here the development of the model in Chapter 2 or the extraction algorithm of
Chapter 6, whereas others are general and transposable to many applications, as
demonstrated in Chapter 5.

Having fulfilled our objectives with the sunspot numbers, we provide now a gen-
eral conclusion to this thesis. It mainly focusses on the limitations of the proposed
methods and the research perspectives since the main achievements have already
been described in the introductory chapter. They have also been developed in de-
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tail throughout the thesis. We also believe that what has been done is (always)
little compared to the vast extent of what could be or remains to be done. Hence,
we first review the limitations of this work, chapter by chapter, and propose po-
tential solutions or limited extensions of the methods. Then, in a second part, we
propose broader research perspectives, related to (1) sunspot numbers and (2) the
monitoring methods that have been developed.

7.1 General conclusions

We begin our journey with the development of a comprehensive uncertainty model
for the sunspot numbers in Chapter 2. This model is written in a multiplicative
framework and includes three types of errors, according to the latest research of
data experts. We provide a complete analysis (with fit of the different distribu-
tions) for all terms of the model, including robust estimators for the actual solar
signal.
A first criticism that can be addressed to this work is the absence of numerical
measures of goodness-of-fit for the different fits that were presented. In practice,
we often choose the best fits by a visual criterion. Although different tests were
used such as the Kolmogorov-Smirnov test (Massey, 2012), the p-values were ei-
ther extremely low or the methods allow no comparison with complex multi-modal
distributions. Further researches are thus needed to provide numerical evaluations
of the proposed parametric distributions.
As a second criticism, it could be noted that we do not really take advantage of
those parametric models for the distributions. At first, we thought that they could
be used for the monitoring though it soon appeared that the distribution of the
long-term error varies significantly from one station to another. Hence, we choose
a non-parametric approach for the long-term monitoring instead. A parametric
monitoring based on the short-term error or the error at minima, as proposed in
Chapter 2, remains to be developed.
Those parametric distributions could however be used to generate data similar to
the observations. A first proposition of such a method was presented in Mathieu
et al. (2019b). In this conference paper, the distribution of the solar signal is used
to simulate new data with similar properties as the observations. This approach
was however not further developed by lack of time, but it could be improved to
follow more closely the model. The distribution of the errors could for instance
be integrated into the procedure, to generate new data in a more diverse manner
than those obtained by the block bootstrap (a method which only samples blocks
of consecutive observations).
A third research perspective is related to the brief analysis of the conditional cor-
relation that is conducted in Section 2.5.5. We could go one step further and
study the conditional distribution of the number of spots (Ns) and groups (Ng)
for different values of the composite (Nc), with aim to reproduce the distribution



7.1. General conclusions 207

of Nc from those of its building blocks. The analysis has not be done in this work
however since the task is arduous: (a) the correlation between Ns and Ng changes
with time and (b) the distribution of Ns and Ng are complex mixtures.

In Chapter 3, we construct a robust non-parametric control scheme to monitor the
sunspot numbers over time. This method is composed of a CUSUM chart designed
by block bootstrap to detect the deviations and support vector machines to esti-
mate the characteristics of those shifts (it is thus called the CUSVM method). In
further research, other charts may be compared with the CUSUM. The exponen-
tially weighted moving average (EWMA) (Roberts, 1959) is for instance another
popular choice of control charts that could be studied. Simulations such as those
presented in (Qiu, 2013, Table 5.3) demonstrate however that both charts have sim-
ilar performances. More elaborated charts such as the adaptive dynamic EWMA
chart in the framework of generalized likelihood ratio testing, which is proposed in
Qiu et al. (2017), could also be tested. Although they may outperform the CUSUM,
those charts are more complex and less familiar to non-specialists of quality control,
which decreases a bit their interest. Moreover, the CUSUM chart has an optimal
relation between its allowance constant k and the target shift size δ, of the form
k = δ/2. This relation allows thus an easier design of the CUSUM with respect to
other charts such as the EWMA.
Although valid for various distributions as studied in Deketelaere (2020), further
research is however needed to see if this relation k = δ/2 is also valid for other
shift shapes than the jumps. Note that this remark also applies to the adaptive
CUSUM chart proposed in Chapter 4. The procedure developed in this chapter
also contains an automatic pre-selection of an in-control pool based on different
clustering algorithms. This method could be modified in future works to take into
account the parametric distributions of the data. This has not be implemented
here however, since the approach may provide good results for the sunspot num-
bers but is more complicated to generalize to other data.

Our journey continues in Chapter 4 with the construction of feed-forward and re-
current neural networks (NN), as alternatives to predict the sizes and shapes of the
deviations. The NN-based control schemes developed in this chapter offer several
advantages with respect to the CUSVM method, such as a simpler processing of the
data or the adjustment of the allowance parameter as a function of the predicted
shift size, k = δ̂(i, t)/2. After comparison with the CUSVM monitoring, they also
appear to detect faster large or oscillating shifts, at the expense of a greater com-
plexity.
The architectures of those networks have however been chosen after only few tests.
We design for instance networks with two times more neurons in the first layer than
in the second but do not try other combinations. More research is thus needed to
explore a larger number of architectures and find potentially sparser networks with



208 Chapter 7. Discussion and Extensions

achieve at the same time similar or better degrees of accuracy. Moreover, the arti-
ficial deviations implemented in the training sets of the SVM and neural networks
could also be more adjusted to the actual deviations of the data, as proposed at
the end of the chapter.
Additionally, the different networks have been compared to the previously devel-
oped CUSVM method as well as with each other on simulated shifts. Those artifi-
cial deviations, although composed of various shift sizes and shapes, were designed
on top of the (IC) sunspot data. Hence, they provide an interesting comparison of
the methods for data which experience a high positive autocorrelation, similar to
those of the sunspot numbers. More results are however needed to see if similar
patterns are observed on data which have negative and/or low autocorrelations and
which follow various distributions.

In Chapter 5, we apply the CUSVM method to the photovoltaic energy production
in Belgium. This allows us to detect different kinds of deviations in those data and
initiates our collaboration with Elia, the manager of the high-voltage electricity in
Belgium, to further analyse the root-causes of those shifts. This second application
also gives us the opportunity to present the package, written in the programming
language Python, which implements the CUSVM method. This package is quite
general and allows the user to select for instance different clustering algorithms
and various block bootstrap procedures to perform the monitoring. It also contains
three different ways to treat the missing values: those can simply be removed from
the data or the values of the chart statistics can also be reset to zero after large gaps
and propagated through the smallest ones. A third method also fills the data by the
mean of each series. To complete the package, more refined techniques could thus
be implemented to fill-up the gaps of the series. This could be particularly useful
for monitoring panels of data which contain only a small number of observations.
Those gaps could for instance by replaced by the cross-sectional median of the panel
or interpolated using a more complex procedure adapted for time-series, such as
those proposed in Dudok de Wit (2011). The method and package can also be
applied to various applications in the future. The next application that we intend
to monitor is for instance the sales of pharmaceutical products across different
stores in Belgium.

In the last part of the thesis, we construct a preliminary version of an automated
method to extract and count the spots and groups from ground-based images of
the Sun. The method shows good results for counting the number of spots in the
period covering years 2011-2020. It works however less well on the first part of
the images, recorded in the years 2003-2010, and for counting the groups. More
research is thus needed to obtain extracted numbers that are closer to the obser-
vations but the approach demonstrates enough potential to be further investigate,
which fulfils our initial objective. In the future, several methods could then be
used to improve the algorithm, such as incorporating more physical information or
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magnetogram images in the processing. Those could help us to distinguish pairs
of spots, especially if they overlap, and groups.
While this approach integrates more information about the solar physics underly-
ing the spots, it is also possible to explore deep learning methods. A convolutional
neural network (CNN) could for instance be developed in the future to automat-
ically extract the number of spots and groups from ground-based images. To
correctly work however, the CNN should be trained on a sufficiently large amount
on data, which are not yet available. One solution to this problem would be to
train the network on pre-processed images obtained with our algorithm (such as
those of Figure 6.2d). These images are indeed more homogeneous and contain the
sunspots which are enhanced with respect to their surrounding. Hence, we expect
that fewer images would be required in the training stage of the method to obtain a
desired accuracy. The extraction algorithm developed in Chapter 6 can also serve
to label the number of spots in the images. It could be interesting to see how the
predictions differ when using those labels with respect to the observations (Ns).
Although the labels are sometimes erroneous, supervised methods have been de-
veloped to be robust against mislabelled data. Bekker and Goldberger (2016) and
Sukhbaatar et al. (2015) add for instance an extra noise layer to match the outputs
of the networks to the noisy labels whereas Liu et al. (2017) rely on a confidence
policy to progressively depend less on the labels and even switch their values to
those of the max-activated neurons, when the networks are confident enough.
Inspiration for extracting and counting the spots may also come from medical image
analysis. Veta et al. (2015) provides for instance an overview of different techniques,
such as CNNs or classifiers based on support vector machines and random forests,
to count mitotic figures in images. Those are one of the most important markers
to detect breast cancers.

7.2 Research perspectives

As stated in the introduction, this thesis follows two tracks: one related to a specific
dataset: the sunspot numbers and the other linked to more general methods that
can be applied to many data. Research perspectives can thus be proposed in both
directions.

7.2.1 Future prospects for the sunspot numbers

Having developed an uncertainty model for the sunspot numbers, we can now em-
ploy it to upgrade the ISN processing that was presented in Section 1.2.2. With this
procedure, the ISN is computed as the daily weighted average of the composites Nc,
which have been previously rescaled by a scaling factor — the k-coefficient defined
in (1.2.2) — evaluated on a single pilot station. This single pilot could thus be first
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replaced by a more robust quantity involving several stations such as the median of
the network or the transformed median defined in (2.5.1). Although the median is
robust to few deviating stations if the network is sufficiently large, the pilot could
also be substituted by the mean or the median over a pool of IC stations. Such a
pool may be selected using e.g. the procedure described in Section 3.4.1. Similarly,
the ISN, which is obtained as the daily mean of the composites Nc, could be com-
puted either as the median of the Ncs from the whole network or the mean/median
over an IC pool only, for robustness purpose. Finally, the scaling factors which are
computed each month as the sigma-clipping mean of (1.2.2) could also be replaced
by the long-term errors with levels, defined in (2.6.5).
Additionally, the model of (2.3.4) may also be used to provide errors for the ob-
servations at each time and in each individual station. The distribution of such
errors can furnish confidence intervals (ci) for the observed numbers in each station
as well. Examples of such errors and cis are already implemented in the package
uncertainty, which is provided for the WDC-SILSO team at the Royal Obser-
vatory of Belgium. It could also be interesting to study in future works how the
errors of the composites propagate to the ISN, especially if the latter is computed
using a more complex procedure than a weighted average.

The quality of the series over time can also be improved using the monitoring
methods that we developed in Chapters 3 and 4. A new version of the ISN may for
instance be released after excluding stations experiencing high deviations from the
computations. Those large deviations can be detected automatically, after eventu-
ally readjusting the control limits of the methods to only exclude the highest shifts
in past series. Then, a monitoring scheme can also be set up to control the stability
of the stations in quasi real-time. Different procedures could be used for this pur-
pose: the CUSVM method proposed in Chapter 3 or another procedure based on
neural networks constructed in Chapter 4 or a combination of both. Different kinds
of alerts could also be designed to advice the observers. Those may depend on the
type of errors but also on the station. Professional observatories may received for
instance more frequent notifications than amateurs. A user-interface could also be
created to allow more autonomous verifications from the users themselves. To that
end, the graphical displays proposed alongside with the monitoring methods (as in
e.g. Figure 3.9) may prove useful.
Such a monitoring has been applied in this work at two different scales, 27 days
and one year. Data may however be supervised at other scales in the future. It
might also be interesting to monitor the short-term error, ε1 of (3.3.1), in incoming
studies.

There are also broader research prospects related to the sunspot numbers that can
be investigated. An interesting research topic is the predictions of future values of
the series. Although it has not be treated in this work, this subject is in fact the
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one which is the most studied in the sunspots literature. Previous works in Dudok
de Wit et al. (2016) model the sunspot numbers by autoregressive processes but
these series are in general poorly described by simple ARMA models. Hence, other
techniques may be explored for obtaining better forecasts.
Petrovay (2020) provides for instance an overview of several methods that are cur-
rently used to predict the amplitude of the following solar maximum just after the
start of a cycle. Three different types of models are presented: (1) precursors which
predict the strength of the solar maximum using measures of some physical quanti-
ties at particular times, (2) model-based approaches which make predictions based
on solar dynamo models and (3) methods based on time-series analysis (including
but not limited to ARMA models). Among those methods, the precursors are used
for the longest and outperform in general the predictions of time-series models.
A popular predictor for the maximum of a cycle is for instance associated to the
amplitude of the magnetic field near the pole in the minimum of the previous cycle.
This precursor relies on the fact that the maximal magnitude of the poloidal field
affects the following maximum of the toroidal field since the latter is produced by
differential rotation on the former, as explained in Chapter 1. The model-based
approaches, although more recently developed, are also gaining increasing interest.
They mostly rely on simplifications (mean-field theory) of the set of coupled differ-
ential equations which describe the behaviours and time evolution of the toroidal
and poloidal magnetic fields. In addition to these three types of methods, Pesnell
(2020) also reviews others techniques such as neural networks for making predic-
tions about the solar cycle 24.
Another promising approach for sunspot predictions is to use hybrid methods,
which combine well-known statistical models for time-series with machine learning
methods and in particular deep neural networks. The exponential smoothing and
recurrent neural network (RNN) (Smyl, 2019) is a good example. This method
uses an exponential smoothing to model non-stationary components of the series
(such as the seasonality and linear trend) whereas the RNN learns the additional
components (the non-linear trend and the stationary part). This method involves
thus global parameters, which are learned over multiple series as well as local pa-
rameters, which are specific to each series, in a common framework. This method
could be applied here for predicting the future values of the robust estimators of
Ns, Ng and Nc, defined in Section 2.5. We refer to Lim and Zhoren (2021) for
a general overview of the machine learning methods for time series forecasting,
including those hybrids models.
Several methods also exist to forecast and de-noise at the same time the series.
Those approaches integrate for instance de-noising layers based on multi-resolution
wavelets into feed-forward or recurrent neural networks, which allows the learning
of the parameters of the network and those of de-noising layers with a common
procedure (Lotric and Dobnikar, 2005). Such methods could thus be particularly
suited for the short-term forecasting of sunspot numbers in the individual stations,
which are corrupted by much noise.



212 Chapter 7. Discussion and Extensions

7.2.2 Future prospects for the monitoring methods

The methods that are developed in this work focus on monitoring the mean of a
panel of time-series. In practice however, the mean and the variance of a process
can both experience a shift. An upward shift occurring in the variance usually
degrades the quality of the series whereas a downward shift tends to improve its
properties. Hence, in most applications, only the upward shifts are interesting to
detect. A decrease in the variance can however be associated in some applications
with higher production costs and may also be monitored for this reason.
Moreover, a change in the variance often impacts the detection of shifts in the
mean. As explained in Qiu (2013), the actual IC average run length (ARL0) value
of a chart designed to detect mean shifts is lower (resp. higher) than expected
when the variance is shifted upward (resp. downward). The proposed methods
could thus be modified to allow the monitoring of the variance of the series as well.
Let us assume that X is a univariate i.i.d. process of IC mean equal to µ0 and IC
variance equal to σ2

0 , which experiences a shift from σ2
0 to σ2

1 in the variance only.
As explained in (Qiu, 2013, Chapter 4), the following two-sided CUSUM chart can
then be used to detect both upward and downward shifts in the variance:
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(7.2.1)

where C+
0 = C−0 = 0. This chart gives an alert if

C+
n > L+ or C−n < L−. (7.2.2)

As for monitoring the mean, if the process is i.i.d. and normally distributed, k has
an optimal value for detecting a shift from σ2

0 to σ2
1 in the variance:

k =
2 log(σ0/σ1)

(σ0/σ1)2 − 1
. (7.2.3)

Based on the above formula, a scheme for monitoring the variance of the series
could therefore be included in the CUSVM method developed in Chapter 3. A
joint monitoring can also be developed for detecting simultaneously shifts in the
mean and the variance of a process. Since both chart statistics (defined in (7.2.1)
for monitoring the variance and in (3.2.13) and in (3.2.15) for monitoring the mean)
are usually correlated, the control limits of such a joint procedure should be cali-
brated together, using a method similar to those described in Algorithm 1.
Similarly, the neural networks constructed in Chapter 4 can also be trained to iden-
tify shifts in the variance of the series, after adapting their training sets. Simple
cut-off values or adaptive CUSUM charts can then be designed to trigger alerts on
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top of those networks when a sufficiently large shift is detected in the variance.

As stated before, a change in the variance can also affect the detection of the devia-
tions in the mean (by modifying the actual ARL0 value of the method). Therefore,
it might be useful to stabilise the variance of the data before monitoring their mean
with the methods proposed in Chapters 3 or 4. Moreover, near-Gaussian processes
are often easier to monitor than data following e.g. an asymmetric distribution.
Indeed, the allowance parameter k of the CUSUM chart is optimally related to
the shift size δ though the formula k = δ/2, when the data follow a distribution
which is close to the normal. Similarly, the positive and negative control limits take
the same value with opposite sign when the distribution of the data is symmetric,
which allows an easier calibration of the chart.
In practice however, a process may be arbitrarily distributed. In these cases, we
may first apply a transformation to stabilise the variance and Gaussianise the data
before the monitoring. Different procedures have been proposed in the literature
for this purpose. The Anscombe transform (applied in Section 2.5.1 for computing
the transformed median of the network) may for instance be used on Poisson pro-
cesses. If the process is non-negative and has a variance which is a non-decreasing
function of the mean (as it is typically the case for Poisson or negative binomial
variables), a data-driven Haar-Fisz transform (Fryzlewicz and Delouille, 2005) can
also be applied for an automated stabilisation of the variance and Gaussianisation
of the data.

Although developing a multivariate scheme was not interesting for the sunspot
numbers, such a method could be construct in the future, for monitoring other
panels of time-series. The quality of spacecraft engines is for instance continuously
monitored though the multivariate control of several series including the tempera-
ture and the pressure of different components of those engines.
In general, two different kinds of multivariate control charts exist in the litera-
ture. Those of the first category are usually composed of univariate charts that are
designed jointly to reach a common value of ARL0 whereas the others are truly
multivariate in the sense that the vector of data from the panel is monitored to-
gether. In both cases, the design is much simpler when the different processes are
not correlated. If a common IC period is available in the different processes, it
should then be possible to design a multivariate control scheme of any category us-
ing a block bootstrap procedure similar to those used in Chapter 3, for taking into
account the actual distribution and the autocorrelations of the series. If all series
contain an IC period but those periods are not overlapping, then univariate charts
could still be adjusted separately for each series with a block bootstrap procedure
and the control limit of the joint scheme could be designed. If, as it is the case
for the sunspot numbers, all series of the panel do not possess an IC period, then
more research is needed to see how such multivariate methods can be designed.
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Multivariate monitoring methods based on neural networks may also be developed.
Hundman et al. (2018) construct for instance a recurrent neural network based
on long short-term memory (LSTM) layers (Hochreiter and Schmidhuber, 1997),
which is used to predict the incoming values of the series. The prediction errors
of those networks are then passed through a non-parametric dynamic threshold to
determine if an anomaly occurred in the data.

To conclude, the work that has begun here can be extended in several directions.
The methods developed in this thesis, either the error modelling or the quality
control, remain to be applied on the processing of the International Sunspot Num-
ber and its building blocks. The non-parametric monitoring methods can also be
further developed to include a multivariate monitoring of the mean and variance
of panels of time-series. Machine learning based procedures also appear to provide
interesting starting points for many research prospects.



References

R. Adipranata, G.S. Budhi, and B. Setiahadi. Automatic classification of sunspot
groups for space weather analysis. International Journal of Multimedia and
Ubiquitous Engineering, 8(3):41–54, 2013.

M.R. Anderberg. Cluster Analysis for Applications. Academic, 1973.

H.W. Babcock. The topology of the Sun’s magnetic field and the 22-year cycle. As-
trophysical Journal, 133:572–587, 1961. URL http://articles.adsabs.harvard.
edu/full/1961ApJ...133..572B.

A.J. Bekker and J. Goldberger. Training deep neural-networks based on unreliable
labels. In 2016 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 2682–2686, 2016. doi: 10.1109/ICASSP.2016.
7472164.

C Bishop. Pattern Recognition and Machine Learning. Springer, 1st edition, 2006.

B. Biswas, P. Sengupta, and D. Chatterjee. Examining the determinants of the
count of customer reviews in peer-to-peer home-sharing platforms using cluster-
ing and count regression techniques. Decision Support Systems, 135, 2020. doi:
https://doi.org/10.1016/j.dss.2020.113324.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

H. Brian Hwarng. Detecting process mean shift in the presence of autocor-
relation: a neural-network based monitoring scheme. International Journal
of Production Research, 42(3):573–595, 2004. doi: https://doi.org/10.1080/
0020754032000123614.

P. Brockwell and P. Davis. Time Series: Theory and Methods. Springer, 2nd
edition, 1991.

http://articles.adsabs.harvard.edu/full/1961ApJ...133..572B
http://articles.adsabs.harvard.edu/full/1961ApJ...133..572B


216 REFERENCES

C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2:121–267, 1998.

E. Carlstein. The use of subseries methods for estimating the variance of a general
statistic from a stationary time series. The Annals of Statistics, 14:1171–1179,
1986.

E. Carlstein, K. Do, P. Hall, T.C. Hesterberg, and H. R. Künsch. Matched-block
bootstrap for dependent data. Bernoulli, 4(3):305–328, 1998.

H.-Y. Chang and S.-J. Oh. Does correction factor vary with solar cycle? Journal
of Astronomy and Space Sciences, 29(2):97–101, June 2012. doi: 10.5140/JASS.
2012.29.2.097.

C-S. Cheng, P-W. Chen, and K-K. Huang. Estimating the shift size in the pro-
cess mean with support vector regression and neural network. Expert Systems
with Applications, 38(8):10624–10630, 2011. doi: https://doi.org/10.1016/j.eswa.
2011.02.121.

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv, 2014. arXiv:1406.1078.

François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

A.R. Choudhuri. Nature’s Third Cycle: a story of sunspots. Oxford University
Press, 1st edition, 2015.

A.R. Choudhuri, M. Schussler, and M. Dikpati. The solar dynamo with meridional
circulation. Astronomy and Astrophysics, 303:29–32, 1995.

F. Clette. Private Communication: Talk presented at 3rd Sunspot Number Work-
shop (Tucson, USA), 2013.

F. Clette and L. Lefèvre. The new sunspot number: assembling all correc-
tions. Solar Physics, 291(9-10):2629–2651, November 2016. doi: 10.1007/
s11207-016-1014-y.

F. Clette, D. Berghmans, P. Vanlommel, R. A. M. Van der Linden, A. Koecke-
lenbergh, and L. Wauters. From the Wolf number to the International Sunspot
Index: 25 years of SIDC. Advances in Space Research, 40(7):919–928, 2007. doi:
10.1016/j.asr.2006.12.045.

T. Colak and R. Qahwaji. Automated McIntosh-based classification of sunspot
groups using MDI images. Solar Physics, 248, 04 2008. doi: 10.1007/
978-0-387-98154-3_7.

https://github.com/fchollet/keras


REFERENCES 217

A. Colin Cameron and Pravin. K. Trivedi. Regression Analysis of Count Data.
Cambridge University Press, 2nd edition, 2013.

D. Comaniciu and P. Meer. Maximum likelihood from incomplete data via the EM
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24
(5):603–619, 2002. doi: 10.1109/34.1000236.

J. Connor, L.E. Atlas, and D.R. Martin. Recurrent networks and NARMA Mod-
eling. Proceedings of the 4th International Conference on Neural Information
Processing Systems, pages 301–308, 1992.

J.J. Curto, M. Blanca, and E. Martinez. Automatic sunspots detection on full-disk
solar images using mathematical morphology. Solar Physics, 250:411–429, 2008.
doi: 10.1007/s11207-008-9224-6.

U. Dasgupta, S. Singh, and V. Jewalikar. Sunspot number calculation using
clustering. In 2011 Third National Conference on Computer Vision, Pat-
tern Recognition, Image Processing and Graphics, pages 171–174, 2011. doi:
10.1109/NCVPRIPG.2011.43.

W. B. Davenport and W. L. Root. Random Signals and Noise. McGraw-Hill, 1968.

E.R. Davies. A modified Hough scheme for general circle location. Pattern Recog-
nition Letters, 7(1):37–44, 1988.

W. De Mulder, S. Bethard, and M.F. Moens. A survey on the application of
recurrent neural networks to statistical language modeling. Computer Speech
and Language, 30, January 2014. doi: 10.1016/j.csl.2014.09.005.

B. Deketelaere. Control chart monitoring of non-normally distributed time series
data". Master’s thesis, Faculté des sciences, Université catholique de Louvain,
2020. URL http://hdl.handle.net/2078.1/thesis:27506.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series
B(Methodological), 39(1):1–38, June 1977.

S. D’Silva and A.R. Choudhuri. A theoretical model for tilts of bipolar magnetic
regions. Astronomy and Astrophysics, 272:621–633, 1993. URL http://adsabs.
harvard.edu/full/1993A&A...272..621D.

S. Dubey, J.N. Sarvaiya, and B. Seshadri. Temperature dependent photovoltaic
(PV) efficiency and its effect on PV production in the world - a review. Energy
Procedia, 33:311–321, 2013. doi: https://doi.org/10.1016/j.egypro.2013.05.072.

T. Dudok de Wit. A method for filling gaps in solar irradiance and solar proxy data.
Astronomy & Astrophysics, 533:A29, September 2011. doi: 10.1051/0004-6361/
201117024.

http://hdl.handle.net/2078.1/thesis:27506
http://adsabs.harvard.edu/full/1993A&A...272..621D
http://adsabs.harvard.edu/full/1993A&A...272..621D


218 REFERENCES

T. Dudok de Wit, L. Lefèvre, and F. Clette. Uncertainties in the sunspot num-
bers: estimation and implications. Solar Physics, 291(9-10):2709–2731, Novem-
ber 2016. doi: 10.1007/s11207-016-0970-6.

K. Ermolli, K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, M. Weber,
Y.C. Unruh, L. Gray, U. Langematz, P. Pilewskie, E. Rozanov, W. Schmutz,
A. Shapiro, S.K. Solanki, and T.N. Woods. Recent variability of the so-
lar spectral irrandiance and its impact on climate modelling. EGU publica-
tion : Atmospheric Chemistry and Physics, 13:3945–3977, 2013. doi: https:
//doi.org/10.5194/acp-13-3945-2013.

M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In A. Simoudis, J. Han, and
U. fayyad, editors, KDD’96: Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, pages 226–231. AAAI Press, August
1996.

M. Evans, N. Hastings, and B. Peacock. Statistical Distributions. Wiley, New-York,
3rd edition, 2000.

A. F. Zuur, E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. Mixed
Effects Models and Extensions in Ecology with R. Springer, 2009.

E. Feigelson and G. Babu. Linear regression in astronomy II. The Astrophysical
Journal, 397(1):55–67, 1992.

P. Fryzlewicz and V. Delouille. A data-driven Haar-Fisz transform for multiscale
variance stabilization. IEEE Workshop on Statistical Signal Processing Proceed-
ings, 2005:539–544, 08 2005. doi: 10.1109/SSP.2005.1628654.

J. Haigh. The effects of solar variability on the Earth’s climate. Philosophical
Transactions of the Royal Society: Mathematical, Physical and Engineering Sci-
ences, 361(1802):95–111, 2002. doi: https://doi.org/10.1098/rsta.2002.1111.

P. Hall, J. Horowitz, and B-Y. Jing. On blocking rules for the bootstrap with
dependent data. Biometrika, 82(3):1561–574, 1995. doi: 10.2307/2337534.

D. H. Hathaway. The solar cycle. Living Reviews in Solar Physics, 7:1, March
2010. doi: 10.12942/lrsp-2010-1.

S Haykin. Neural Networks and Learning Machines. Pearson, 3rd edition, 2009.

G. Hinton, N. Srivastava, and K. Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. 2012.

J.L. Hintze and Nelson R. D. Violin plots: a box plot-density trace synergism.
The American Statistician, 52(2):181–184, 1998. doi: 10.2307/2685478. URL
http://www.jstor.org/stable/2685478.

http://www.jstor.org/stable/2685478


REFERENCES 219

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9:1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom. Detect-
ing spacecraft anomalies using LSTMs and nonparametric dynamic thresholding.
Proceedings of 24th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 387–395, 07 2018. doi: 10.1145/3219819.3219845.

A.J. Izenman. J.R. Wolf and the Zürich sunspot relative numbers. The Mathemat-
ical Intelligencer, 7(1):27–33, 1985. doi: 10.1007/BF03023002.

G. Jain and P. Consul. A generalized negative binomial distribution. SIAM Journal
on Applied Mathematics, 21(4):501–513, 1970. doi: https://doi.org/10.1137/
0121056.

J. Kenney and E. Keeping. Mathematics of Statistics, Part Two. Van Nostrand,
2nd edition, 1951.

D. Kingma and J. Ba. Adam: a method for stochastic optimization. In 2015
3rd International Conference for Learning Representations, 2015. URL http:
//arxiv.org/abs/1412.6980.

T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480,
1990. doi: 10.1109/5.58325.

W. Kruskal and W. Wallis. Use of ranks in one-criterion variance analysis. Journal
of the American Statistical Association, 47(260):583–621, 1952. doi: 10.1191/
1471082X04st068oa. URL https://www.jstor.org/stable/2280779.

H. R. Künsch. The jackknife and the bootstrap for general stationary observations.
The Annals of Statistics, 17(3):1217–1241, 1989. URL https://www.jstor.org/
stable/2241719.

S.N. Lahiri. Theoretical comparisons of block bootstrap methods. The
Annals of Statistics, 27(1):386–404, 1999. doi: https://doi.org/10.1007/
978-1-4757-3803-2_5.

S.N. Lahiri. Resampling Methods for Dependent Data. Springer, 1st edition, 2003.

M. Langkvist, L. Karlsson, and A. Loutfi. A review of unsupervised feature learning
and deep learning for time-series modeling. Pattern Recognition Letters, 42:11–
24, 2014. ISSN 0167-8655. doi: https://doi.org/10.1016/j.patrec.2014.01.008.
URL https://www.sciencedirect.com/science/article/pii/S0167865514000221.

B. Laperre, J. Amaya, and G. Lapenta. Dynamic time warping as a new evalua-
tion for Dst forecast with machine learning. Frontiers in Astronomy and Space
Sciences, 7:39, 2020. ISSN 2296-987X. doi: 10.3389/fspas.2020.00039. URL
https://www.frontiersin.org/article/10.3389/fspas.2020.00039.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.jstor.org/stable/2280779
https://www.jstor.org/stable/2241719
https://www.jstor.org/stable/2241719
https://www.sciencedirect.com/science/article/pii/S0167865514000221
https://www.frontiersin.org/article/10.3389/fspas.2020.00039


220 REFERENCES

J. Lederer. Activations functions in artificial neural networks: a systematic
overview. arXiv, January 2021. arXiv:2101.09957.

R.B. Leighton. A Magneto-kinematic model of the solar cycle. Astrophysical Jour-
nal, 156:1–26, 1969. URL http://adsabs.harvard.edu/full/1969ApJ...156...
.1L.

B. Lim and S. Zhoren. Time-series forecasting with deep learning: a survey. Philo-
sophical transactions of the royal society A, 2021. doi: https://doi.org/10.1098/
rsta.2020.0209.

R. Y. Liu and K. Singh. Moving blocks jackknife and bootstrap capture weak de-
pendence. In R Lepage and L. Billard, editors, Exploring the Limits of Bootstrap,
pages 225–248. Wiley, New-York, 1992.

X. Liu, S. Li, M. Kan, S. Shan, and X. Chen. Self-error-correcting convolutional
neural network for learning with noisy labels. In 2017 12th IEEE International
Conference on Automatic Face Gesture Recognition (FG 2017), pages 111–117,
2017. doi: 10.1109/FG.2017.22.

S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, June 1982.

S.P. Lloyd. Least squares quantization in PCM. Technical Report RR-5497 5497,
Bell Lab, 1957.

G. Lorden. Procedures for reacting to a change in distribution. The Annals of
Mathematical Statistics, 42:1897–1908, 1971.

U. Lotric and A. Dobnikar. Predicting time series using neural networks with
wavelet-based denoising layers. Neural Computing and Applications, 14:11–17,
2005.

J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In L.M. Le Cam and J. Neyman, editors, Proceedings of the fifth
Berkeley symposium on mathematical statistics and probability, pages 281–297.
University of California Press, California, United States, 1967.

M. Makitalo and A. Foi. Optimal inversion of the generalized Anscombe transfor-
mation for Poisson-gaussian noise. IEEE Transactions on Image Processing, 22
(1):91–103, 2013. doi: 10.1109/TIP.2012.2202675.

F. Massey. The Kolmogorov-Smirnov test for goodness of fit. Journal of the
American Statistical Association, 46(253):68–78, 2012.

S. Mathieu, R. von Sachs, V. Delouille, L. Lefèvre, and C. Ritter. Uncertainty
quantification in sunspot counts. The Astrophysical Journal, 886(1):7, 2019a.
doi: https://doi.org/10.3847/1538-4357/ab4990.

http://adsabs.harvard.edu/full/1969ApJ...156....1L
http://adsabs.harvard.edu/full/1969ApJ...156....1L


REFERENCES 221

S. Mathieu, R. von Sachs, V. Delouille, L. Lefèvre, and C. Ritter. Modelisa-
tion et estimation du nombre de taches solaires. In Colloque du Groupement de
Recherche En Traitement du Signal et des Images (GRETSI), August 2019b.

S. Mathieu, L. Lefèvre, R. von Sachs, V. Delouille, C. Ritter, and F. Clette. Non-
parametric monitoring of sunspot number observations. Journal of Quality Tech-
nology, 2021. Tentatively accepted.

Patrick S. McIntosh. The classification of sunspot groups. Solar Physics, 125(2):
251–267, September 1990. doi: 10.1007/BF00158405.

T. Mikolov, M. Karafiàt, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent
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